Optimum Design of Curvilinear Stiffened Panels with Stiffening Beams

Article Preview

Abstract:

The paper presents a framework for design and optimization of curvilinear stiffened panels with any cross-section shape of stiffener. Within this framework, the weight of stiffened panel applied complex loads, is minimized under the constraints of structural responses include global buckling, maximum stress and crippling. Then, a stiffened panel with two blade curvilinear stiffeners is optimized using this framework, and the optimum performs better than another existing design. Finally, it is concluded that stiffening beam is suitable for simulate stiffener sustains part of applied load directly.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

285-289

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Bedair O. Analysis and limit state design of stiffened plates and shell: a world view. ASME, (2009).

Google Scholar

[2] Nicholas E D. Developments in the friction-stir welding of metals. ICAA-6: 6th International Conference on Aluminium Alloys, (1998).

Google Scholar

[3] DebRoy T, Bhadeshia H K D H. Friction stir welding of dissimilar alloys–a perspective. Science and Technology of Welding and Joining, 2010, 15(4): 266-270.

DOI: 10.1179/174329310x12726496072400

Google Scholar

[4] Taminger K M B, Hafley R A, and Dicus D L. Solid freeform fabrication: an enabling technology for future spacemissions. Keynote Lecture for 2002 International Conference on Metal Powder Deposition for RapidManufacturing. San Antonio, TX: Metal Powder Industries Federation, 2002: 51–56.

Google Scholar

[5] Taminger K M B, Hafley R A. Electron beam freeform fabrication: a rapid metal deposition process. Proceedings of 3rd Annual Automotive Composites Conference. Troy, MI: Society of Plastic Engineers, (2003).

Google Scholar

[6] Kapania R K, Li J, Kapoor H. Optimal design ofunitized panels with curvilinear stiffeners. AIAA 2005-7482, (2005).

DOI: 10.2514/6.2005-7482

Google Scholar

[7] Joshi P, Mulani S B, Kapania R K. Optimal design of unitized structures with curvilinear stiffeners using response surface methodology. AIAA 2008-2304, (2008).

DOI: 10.2514/6.2008-2304

Google Scholar

[8] Gurav S P, Kapania R K. Development of a framework for the design optimization of unitized structures. AIAA 2009-2186, (2009).

DOI: 10.2514/6.2009-2186

Google Scholar

[9] Mulani S B, Locatelli D, Kapania R K. Algorithm development for optimization of arbitrary geometry panels using curvilinear stiffeners. AIAA 2010-2674, (2010).

DOI: 10.2514/6.2010-2674

Google Scholar

[10] Joshi P, Mulani S B, Gurav S P, et al. Design optimization for minimum sound radiation from point-excited curvilinearly stiffened panel. Journal of Aircraft, 2010; 47(4): 1100-1110.

DOI: 10.2514/1.44778

Google Scholar

[11] Mulani S B, Slemp W C H, Kapania R K. EBF3PanelOpt: a framework for curvilinear stiffened panels optimization under multiple load cases. AIAA 2010-9238, (2010).

DOI: 10.2514/6.2010-9238

Google Scholar

[12] Dang T D, Kapania R K, Slemp W C H, et al. Optimization and postbuckling analysis of curvilinear-stiffened panels under multiple-load cases. Journal of Aircraft, 2010; 47(5): 1665-1671.

DOI: 10.2514/1.c000249

Google Scholar

[13] Mulani S B, Locatelli D, Kapania R K. Grid-stiffened panel optimization using curvilinear stiffeners. AIAA 2011-1895, (2011).

DOI: 10.2514/6.2011-1895

Google Scholar

[14] Mulani S B, Duggirala V, Kapania R K. Curvilinearly T-stiffened panel optimization framework under multiple load cases using parallel processing. AIAA 2012-1754, (2012).

DOI: 10.2514/6.2012-1754

Google Scholar

[15] Bushnell D. PANDA2—Program for minimum weight design of stiffened, composite, locally buckled panels. Computers and Structures 1987; 25(4): 469-605.

DOI: 10.1016/0045-7949(87)90267-7

Google Scholar

[16] Bushnell D. Recent enhancements to PANDA2. Proceedings of the 37h AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA Paper 96-1337, Salt Lake City, UT, April (1996).

DOI: 10.2514/6.1998-1990

Google Scholar

[17] Bushnell D. Additional buckling solutions in PANDA2. Proceedings of the 40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA Paper 99-1233, St. Louis, Missouri, April 1999; 302-345.

DOI: 10.2514/6.1998-1990

Google Scholar

[18] Kim G I, Tuttle M E. Buckling analysis for a stiffened panel. Proceedings of the 40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA Paper 94-1496, Hilton Head, SC, April 1994; 1423-1433.

DOI: 10.2514/6.2007-2126

Google Scholar

[19] Deb K, Pratap A, Agrawal S, et al. Fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182–197.

DOI: 10.1109/4235.996017

Google Scholar

[20] Yusoff Y, Ngadiman M S, Zain A M. Overview of NSGA-II for optimizing machining process parameters. Procedia Engineering, 2011, 15: 3978-3983.

DOI: 10.1016/j.proeng.2011.08.745

Google Scholar