Computer-Assisted Percutaneous Renal Access Using Intraoperative Ultrasonography

Article Preview

Abstract:

This paper develops an ultrasound-based surgical navigation system for percutaneous renal intervention. The proposed system integrates preoperative magnetic resonance (MR) planning with intraoperative ultrasonography (US) slices, where the MR imagery is registered to the calibrated US data. The interventional punctures can be performed under a visualized guidance interface. We describe this navigation system in details and evaluate the navigated intervention via a phantom model.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1022-1027

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Auranuch. Lorsakul, et al, Toward Robot-Assisted Dental Surgery: Path Generation and Navigation System Using Optical Tracking Approach, Proc. IEEE International Conference on Robotics and Biomimetics, pp.1212-1217, (2009).

DOI: 10.1109/robio.2009.4913173

Google Scholar

[2] Costa DJ, Sindwani R, Advances in surgical navigation, Otolaryngol Clin North Am, pp.799-811, (2009).

Google Scholar

[3] Hepworth EJ, Bucknor M, Patel A, et al. Nationwide surgery on the use of image-guided functional endoscopic sinus surgery, Otolaryngol Head Neck Surg; (2006).

DOI: 10.1016/j.otohns.2006.01.025

Google Scholar

[4] Penney GP, Blackall JM, Hamady MS, Sabharwal T, Adam A, Hawkes D. Registration of freehand 3D ultrasound and magnetic resonance liver images, Med Image Anal 2004, p.81–91.

DOI: 10.1016/j.media.2003.07.003

Google Scholar

[5] Cash D. M., Glasgow S. C., Clements L. W., Miga M. I., Dawant B. M., Cao Z., Galloway R. L., and Chapman W. C. Concepts and preliminary data towards the realization of an image-guided liver surgery system, J. Gastrointest Surg. 11(7), 844-859, (2007).

DOI: 10.1007/s11605-007-0090-6

Google Scholar

[6] Prager RW, Rohling RN, Gee AH, et al. Rapid calibration for 3-D freehand ultrasound. Ultrasound Med Biol 1998b, pp.855-869.

DOI: 10.1016/s0301-5629(98)00044-1

Google Scholar

[7] Laurence Mercier, Thomas Lango, Frank Lindseth, D. Louis Collins, A review of calibration techniques for freehand 3-D ultrasound systems, Ultrasound in Med. & Biol., Vol. 31, No. 4, pp.449-471 (2005).

DOI: 10.1016/j.ultrasmedbio.2004.11.015

Google Scholar

[8] Barry CD, Allott CP, John Nw, et al. Three-dimensional freehand ultrasound: image reconstruction and volume analysis, Ultrasound Med Biol 1997, pp.1209-1224.

DOI: 10.1016/s0301-5629(97)00123-3

Google Scholar

[9] Detmer PR, Bashein G, Hodges T, et al. 3D ultrasound image feature localization based on magnetic scanhead tracking: In vitro calibration and validation. Ultrasound Med Biol1994, pp.381-395.

DOI: 10.1016/0301-5629(94)90052-3

Google Scholar

[10] Carr J. Surface reconstruction in 3D medical imaging, Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand, (1996).

Google Scholar

[11] R.W. Prager, R. N. Rohling, A. H. Gee, and L. Berman. Rapid Calibration for 3-D Freehand Ultrasound, Ultrasound in Medicine and Biology, p.855–869, (1998).

DOI: 10.1016/s0301-5629(98)00044-1

Google Scholar