Compressive Sensing-Based Angle Estimation for MIMO Radar with Multiple Snapshots

Article Preview

Abstract:

The issue of angle estimation for multiple-input multiple-output (MIMO) radar is studied and an algorithm for the estimation based on compressive sensing with multiple snapshots is proposed. The dimension of received signal is reduced to make the computation burden lower, and then the noise sensitivity is reduced by the eigenvalue decomposition (EVD) of the covariance matrix of the reduced-dimensional signal. Finally the signal subspace obtained from the eigenvectors is realigned to apply the orthogonal matching pursuit (OMP) for angle estimation. The angle estimation performance of the proposed algorithm is better than that of estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm, and reduced-dimension Capon. Furthermore, the proposed algorithm works well for coherent targets, and requires no knowledge of the noise. The complexity analysis and simulation results verify the effectiveness of the algorithm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1028-1032

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Fishler, A. Haimovich, R. S. Blum, L. J. Cimini, D. Chizhik, and R. A. Valenzuela, MIMO radar: an idea whose time has come, in Proc. IEEE Radar Conf., Apr. 2004: 71–78.

DOI: 10.1109/nrc.2004.1316398

Google Scholar

[2] J. Li and P. Stoica, MIMO radar—diversity means superiority", in Proc. 14th Adaptive Sensor Array Process. Workshop (ASAP , 06), Lincoln Lab, Mass, USA, Dec. 2006: 1-6.

Google Scholar

[3] X. Li, Z. Zhang et al, A Study of Frequency Diversity MIMO Radar Beamforming, IEEE 10th International Conference (ICSP2010), 2010: 352-356.

Google Scholar

[4] R. Sharma, Analysis of MIMO radar ambiguity functions and implications on clear region, IEEE Radar Conf, June 2010: 544-548.

DOI: 10.1109/radar.2010.5494562

Google Scholar

[5] J. Li, G. Liao, H. Griffiths, Bistatic MIMO Radar Space-Time Adaptive Processing, IEEE International Radar Conference, Westin Crown Center in Kansas City, Missouri, May 2011: 498-502.

DOI: 10.1109/radar.2011.5960587

Google Scholar

[6] X.H. Wu, A.A. Kishk, A.W. Glisson, MIMO-OFDM radar for direction estimation, IET Radar, Sonar &Navigation, 2010, 4(1): 28-36.

DOI: 10.1049/iet-rsn.2008.0152

Google Scholar

[7] J. Li, P. Stoica, L. Xu, and W. Roberts, On parameter identifiability of MIMO radar, IEEE Signal Process. Lett, 2007, 14(12): 968–971.

DOI: 10.1109/lsp.2007.905051

Google Scholar

[8] J. Li, G. Liao, K. Ma and C. Zeng, Waveform Decorrelation for Multitarget Localization in Bistatic MIMO Radar Systems, 2010 IEEE International Radar Conference, Washington, May 2010: 21-24.

DOI: 10.1109/radar.2010.5494659

Google Scholar

[9] J. Chen, H. Gu and W. Su, Angle estimation using ESPRIT without pairing in MIMO radar, Electron. Lett., 2008, 44(24): 1422-1423.

DOI: 10.1049/el:20089089

Google Scholar

[10] H. Yan, J. Li, G. Liao, Multitarget identification and localization using bistatic MIMO radar systems, EURASIP J. Adv. Signal Process., Article ID283483, 2008: 1-8.

DOI: 10.1155/2008/283483

Google Scholar

[11] X. Gao, X. Zhang, G. Feng, et al, On the MUSIC-derived Approaches of Angle Estimation for Bistatic MIMO Radar", WNIS , 09. International Conference on Wireless Networks and Information Systems, 2009: 343-346.

DOI: 10.1109/wnis.2009.25

Google Scholar

[12] X. Zhang, Z. Xu, L. Xu, D. Xu, Trilinear decomposition-based transmit angle and receive angle estimation for multiple-input multiple-output radar, IET Radar, Sonar & Navigation, 2011, 5(6): 626 – 631.

DOI: 10.1049/iet-rsn.2010.0265

Google Scholar

[13] D. Nion, N.D. Sidiropoulos, Adaptive algorithms to track the PARAFAC decomposition of a third-order tensor, IEEE Trans. on Signal Proces., Jun. 2009, 57(6): 2299-2310.

DOI: 10.1109/tsp.2009.2016885

Google Scholar

[14] X. Zhang and D. Xu, Low-complexity ESPRIT-based DOA estimation for collocated MIMO radar using reduced-dimension transformation, Electronics Letters, 2011, 47(4): 283-284.

DOI: 10.1049/el.2010.3279

Google Scholar

[15] X. Zhang, Y. Huang, C. Chen, et. al. Reduced-complexity Capon for direction of arrival estimation in a monostatic multiple-input multiple-output radar, IET Radar, Sonar & Navigation, 2012, 6(8): 796-801.

DOI: 10.1049/iet-rsn.2011.0343

Google Scholar

[16] D. L. Donoho. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.

DOI: 10.1109/tit.2006.871582

Google Scholar

[17] E. Candes,J. Romberg,J. Tao. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on In formation Theory, 2006, 52(2):489-509.

DOI: 10.1109/tit.2005.862083

Google Scholar

[18] D. Malioutov, M. Cetin, and A. S. Willsky. A sparse signal reconstruction perspective for source localization with sensor arrays,. IEEE Trans. Signal Process. , 2005, 53, (8):. 3010 – 3022.

DOI: 10.1109/tsp.2005.850882

Google Scholar

[19] N. Hu, Z. Ye, D. Xu and S. Cao. A sparse recovery algorithm for DOA estimation using weighted subspace fitting, Signal processing, 2012, 92: 2566-2570.

DOI: 10.1016/j.sigpro.2012.03.020

Google Scholar

[20] J. A. Tropp, and A. C. Gilbert. Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit, IEEE Trans. Inf. Theory , 2007, 53, (12): 4655 – 4666.

DOI: 10.1109/tit.2007.909108

Google Scholar

[21] P. Stoica and A. Nehorai, Performance study of conditional and unconditional direction-of-arrival estimation, IEEE Trans. Signal Process., 1990, 38(10): 1783–1795.

DOI: 10.1109/29.60109

Google Scholar