Compressed Sensing Trilinear Model-Based Angle Estimation for Bistatic MIMO Radar

Article Preview

Abstract:

In this paper, we address the transmit angle and receive angle estimation problem for a bistatic multiple-input multiple-output (MIMO) radar. This paper links MIMO radar angle estimation problem to the compressed sensing trilinear model. Exploiting this link, it derives a compressed sensing trilinear model-based angle estimation algorithm, which can obtain automatically paired two-dimensional angle estimation. The proposed algorithm requires no spectral peak searching or pair matching, and it has better angle estimation performance than conventional algorithms including estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm. Simulation results illustrate performance of the algorithm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1033-1038

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Fishler, A. Haimovich, R. S. Blum, L. J. Cimini, D. Chizhik, and R. A. Valenzuela, MIMO radar: an idea whose time has come, in Proc. IEEE Radar Conf., Apr. 2004, p.71–78.

DOI: 10.1109/nrc.2004.1316398

Google Scholar

[2] J. Li and P. Stoica, MIMO radar—diversity means superiority, " in Proc. 14th Adaptive Sensor Array Process. Workshop (ASAP , 06), Lincoln Lab, Mass, USA, Dec. (2006).

Google Scholar

[3] E. Fishler, A. Haimovich, R. S. Blum, L. J. Cimini Jr., D. Chizhik, and R. A. Valenzuela, Spatial diversity in radars models and detection performance, IEEE Trans. Signal Process., vol. 54, no. 3, p.823–838, (2006).

DOI: 10.1109/tsp.2005.862813

Google Scholar

[4] D. R. Fuhrmann and G. S. Antonio, Transmit beamforming for MIMO radar systems using partial signal correlation, in Proc. 38th Asilomar Conf. on Signals, Systems and Computers, Nov. 2004, vol. 1, p.295–299.

DOI: 10.1109/acssc.2004.1399140

Google Scholar

[5] L. Xu, J. Li, and P. Stoica, Adaptive techniques for MIMO radar, in Proc 4th Workshop on Sensor Array and Multichannel Signal Process., p.258–262, Jul. (2006).

Google Scholar

[6] C. Duofang, C. Baixiao, and Q. Guodong, Angle estimation using ESPRIT in MIMO radar, Electron. Lett., vol. 44, no. 12, p.770–771, (2008).

DOI: 10.1049/el:20080276

Google Scholar

[7] C. Jinli, G. Hong and S. Weimin, Angle estimation using ESPRIT without pairing in MIMO radar, Electron. Lett., vol. 44, no. 24, p.1422–1423, (2008).

DOI: 10.1049/el:20089089

Google Scholar

[8] D. Nion, N. D. Sidiropoulos, A PARAFAC-based technique for detection and localization of multiple targets in a MIMO radar system, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, p.2077-(2080).

DOI: 10.1109/icassp.2009.4960024

Google Scholar

[9] X. Zhang, Z. Xu, L. Xu and D. Xu, Trilinear decomposition-based transmit angle and receive angle estimation for multiple-input multiple-output radar, IET Radar, Sonar and Navigation, vol . 5, no. 6, pp.626-631, (2011).

DOI: 10.1049/iet-rsn.2010.0265

Google Scholar

[10] D. Nion, N.D. Sidiropoulos, Adaptive algorithms to track the PARAFAC decomposition of a third-order tensor, IEEE Transactions on Signal Processing, vol. 57, no. 6, pp.2299-2310, Jun. (2009).

DOI: 10.1109/tsp.2009.2016885

Google Scholar

[11] M. Jin, G Liao and J. Li, Joint DOD and DOA estimation for bistatic MIMO radar, Signal Processing, vol. 89, p.244–251, (2009).

DOI: 10.1016/j.sigpro.2008.08.003

Google Scholar

[12] J. B. Kruskal, Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics, Linear Algebra Applicat., vol. 18, p.95–138, (1977).

DOI: 10.1016/0024-3795(77)90069-6

Google Scholar

[13] L. De Lathauwer, B. De, and M. J. Vandewalle, Computation of the canonical decomposition by means of a simultaneous generalized schur decomposition, SIAM J. Matrix Anal. Appl., vol. 26, no. 2, p.295–327, (2004).

DOI: 10.1137/s089547980139786x

Google Scholar

[14] L. De Lathauwer, A link between the canonical decomposition in multi-linear algebra and simultaneous matrix diagonalization, SIAM J. Matrix Anal. Appl., vol. 28, no. 3, p.642–666, (2006).

DOI: 10.1137/040608830

Google Scholar

[15] N. D. Sidiropoulos, G. B. Giannakis, and R. Bro, Blind PARAFAC receivers for DS-CDMA systems, IEEE Trans. Signal Process., vol. 48, no. 3, p.810–823, (2000).

DOI: 10.1109/78.824675

Google Scholar

[16] D. L. Donoho. Compressed sensing,. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.

DOI: 10.1109/tit.2006.871582

Google Scholar

[17] E. Candes,J. Romberg,J. Tao. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on In formation Theory, 2006, 52(2): 489-509.

DOI: 10.1109/tit.2005.862083

Google Scholar

[18] D. Malioutov, M. Cetin, and A. S. Willsky. A sparse signal reconstruction perspective for source localization with sensor arrays,. IEEE Trans. Signal Process. , 2005, 53, (8):. 3010 – 3022.

DOI: 10.1109/tsp.2005.850882

Google Scholar

[19] N. Hu, Z. Ye, D. Xu and S. Cao. A sparse recovery algorithm for DOA estimation using weighted subspace fitting, Signal processing, 2012, 92: 2566-2570.

DOI: 10.1016/j.sigpro.2012.03.020

Google Scholar

[20] R. Bro, N. D. Sidiropoulos, and G. B. Giannakis, A fast least squares algorithm for separating trilinear mixtures, in Proc. Inter. Workshop ICA and BSS, France, Jan. 1999, p.289–294.

Google Scholar

[21] P. Stoica and A. Nehorai, Performance study of conditional and unconditional direction-of-arrival estimation, IEEE Trans. Signal Process., vol. 38, p.1783–1795, Oct. (1990).

DOI: 10.1109/29.60109

Google Scholar