A Multi-Dimensional Data Storage Using Quad-Tree and Z-Ordering

Article Preview

Abstract:

Multi-dimensional applications use tree structure to store data and space filling curves to traverse data. Most frequently used Quad-tree and Z-ordering curve are analyzed. By importing these to a HDF5 file format, a multi-dimensional data storage subsystem is constructed. Performance test results show in a sequential reading application environment, this method is feasible and efficient.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2436-2441

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Scott Klasky, Hasan Abbasi, Jeremy Logan, et al. In situ data processing for extreme scale computing [C]. Scientific Discovery through Advanced Computing Program (SciDAC), Denver, Colorado. 2011.

Google Scholar

[2] Top500org (2012). Retrieved 10. 29, 2012., from http: /i. top500. org/system/177556.

Google Scholar

[3] Jay Lofstead, Milo Polte, Garth Gibson, et al. Six degrees of scientific data: reading patterns for extreme scale science IO[C]. Proceedings of the 20th international symposium on High performance distributed computing, San Jose, California, USA, ACM. 2011: 49-60.

DOI: 10.1145/1996130.1996139

Google Scholar

[4] Volker Gaede, Oliver Guenther. Multidimensional access methods[J]. ACM Computing Surveys. 1998, 30(2): 170-231.

DOI: 10.1145/280277.280279

Google Scholar

[5] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, et al. The R*-tree: an efficient and robust access method for points and rectangles[J]. SIGMOD Rec. 1990, 19(2): 322-331.

DOI: 10.1145/93605.98741

Google Scholar

[6] Antonin Guttman. R-trees: a dynamic index structure for spatial searching[J]. SIGMOD Rec. 1984, 14(2): 47-57.

DOI: 10.1145/971697.602266

Google Scholar

[7] Jon Louis Bentley. Multidimensional binary search trees used for associative searching[J]. Commun. ACM. 1975, 18(9): 509-517.

DOI: 10.1145/361002.361007

Google Scholar

[8] Henry Fuchs, Zvi M. Kedem, Bruce F. Naylor. On visible surface generation by a priori tree structures[J]. SIGGRAPH Comput. Graph. 1980, 14(3): 124-133.

DOI: 10.1145/965105.807481

Google Scholar

[9] Timos K. Sellis, Nick Roussopoulos, Christos Faloutsos. The R+-Tree: A Dynamic Index for Multi-Dimensional Objects[C]. Proceedings of the 13th International Conference on Very Large Data Bases, Morgan Kaufmann Publishers Inc. 1987: 507-518.

Google Scholar

[10] R. A. Finkel,J. L. Bentley. Quad trees a data structure for retrieval on composite keys[J]. Acta Informatica. 1974, 4(1): 1-9.

DOI: 10.1007/bf00288933

Google Scholar

[11] H SAMET. The quadtree and related hierarchical data structure. [J]. ACM Computer Survey. 1984, 16(2): 187-260.

Google Scholar

[12] Ibrahim Kamel, Christos Faloutsos. Hilbert R-Tree: An Improved R-Tree Using Fractals. ISR; TR 1993-19.

Google Scholar

[13] Finkel, R. A. and J. L. Bentley (1974). Quad trees a data structure for retrieval on composite keys., Acta Informatica 4(1): 1-9.

DOI: 10.1007/bf00288933

Google Scholar

[14] L. Balmelli, J Kovacevic,M. Vetterli. Quadtrees for embedded surface visualization: constraints and efficient data structures[C]. 1999 International Conference on Image Processing, ICIP 99, KOBE, JAPAN, IEEE Society. 1999: 487-491, vol. 482.

DOI: 10.1109/icip.1999.822944

Google Scholar

[15] Matthew T. Dougherty, Michael J. Folk, Erez Zadok, et al. Unifying biological image formats with HDF5[J]. Communications of ACM. 2009, 52(10): 42-47.

DOI: 10.1145/1562764.1562781

Google Scholar