[1]
Ranchin T, Wald L. The wavelet transform for the analysis of remotely sensed images[J]. International Journal of Remote Sensing, 1993, 14(3): 615-619.
DOI: 10.1080/01431169308904362
Google Scholar
[2]
E. J. Candès, Harmonic analysis of neural networks, Appl. Comput. Harmon. Anal., vol. 6, p.197–218, (1999).
Google Scholar
[3]
J. L. Starck, E. J. Candès, and D. L. Donoho, The curvelet transform for image denosing, IEEE Trans. Image Process., vol. 11, no. 6, p.670–684, Jun. (2002).
DOI: 10.1109/tip.2002.1014998
Google Scholar
[4]
Donoho D.L. Orthonormal ridgelets and linear singularities [R]. Tech. Report, Department of Statistics, Stanford University, (1998).
Google Scholar
[5]
Candès E J, Demanet L, Donoho D L, et al. Fast discrete curvelet transforms. Appied and Computational Mathe ematics, Califormia Institute of Technology, 2005: 1-43.
Google Scholar
[6]
Qang Zhan xia, et al. Remote sensing image fusion based on wavelet transform local variance [J]. Huazhong University of Science and Technology (Natural Science), 2003, 31(6): 89-91.
Google Scholar
[7]
L. Alparone, S. Baronti, A. Garzelli, F. Nencini. Remote sensing image fusion using the curvelet transforms. International Journal on Information Fusion, Elsevier, 2007, 8(2): 143-15.
DOI: 10.1016/j.inffus.2006.02.001
Google Scholar
[8]
Xiao Gang, Jing Zhong liang, Wu Jian min, Liu Congyi. Synthetically evaluation system for multi-source image fusion and experiment analysis[J]. Journal of Shanghai Jiaotong University, 2006, 11(3): 263-270.
Google Scholar