[1]
J. A. Bondy, U. S. R. Murty. Graph Theory with Applications. The MaCmillan Press ltd, London and Basingstoke, New York, (1976).
Google Scholar
[2]
B. Yao, X. -Q. Zhou, J. -J. Zhang, te al. Labellings And Invariants Of Models From Complex Networks. to appear.
Google Scholar
[3]
Joseph A. Gallian. A Dynamic Survey of Graph Labelling. The Electronic Journal of Combinatorics, 14 (2009), #DS6.
Google Scholar
[4]
R. B. Gnanajothi. Topics in Graph Theory. Ph. D. Thesis, Madurai Kamaraj University, (1991).
Google Scholar
[5]
M. Baca, F. Bertault, J. MacDougall, M. Miller, R. Simanjuntak, and Slamin, Vertex-antimagic total labelings of graphs, Discuss. Math. Graph Theory, 23 (2003)67-83.
DOI: 10.7151/dmgt.1186
Google Scholar
[6]
A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull, 13 (1970), 451-461.
DOI: 10.4153/cmb-1970-084-1
Google Scholar
[7]
B. Yao, H. Cheng, M. Yao, M. -M. Zhao. A Note on Strongly Graceful Trees. Ars Combinatoria 92 (2009), 155-169.
Google Scholar
[8]
Graham R J and Sloane N J A. On additive bases and harmonious graphs, Siam J Algebraic Diccrete Mathods, 1980, 29(1): 382-404.
DOI: 10.1137/0601045
Google Scholar
[9]
X. -Q. Zhou, B. Yao, X. -E. Chen, H. -X Tao. A proof to the odd-gracefulness of all lobsters. Ars Combinatoria 103 (2012), 13-18.
Google Scholar
[10]
Xiangqian Zhou, Bing Yao, Xiang'en Chen. On Odd-gracefulness of All Symmetric Trees. to appear in JCMCC.
Google Scholar
[11]
G. S. Bloom and S.W. Golomb, Applications of numbered undirected graphs, Proc. IEEE 65 (1977), 562-570.
DOI: 10.1109/proc.1977.10517
Google Scholar
[12]
G. S. Bloom and S.W. Golomb, Numbered complete graphs, unusual rules, and assorted applications, In: Theory and Applications of Graphs, Lecture Notes in Math. 642 (1978), 53-65.
DOI: 10.1007/bfb0070364
Google Scholar
[13]
A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs, Internat. Symposium, Rome, July 1966, Gordon and Breach, N.Y. and Dunod Paris (1967), 349-355.
Google Scholar
[14]
J. Sedlacek, Problem 27, In: Theory and Its Applications, Proc. Symp. Smolenice, 1963, 163-169.
Google Scholar
[15]
B. M. Stewart, Magic graphs, Can. J. Math. 18 (1966), 1031-1056.
Google Scholar
[16]
A. Kotzig and A. Rosa. Magic valuations of finite graphs. Canada. Math. Bull., 13 (1970), 451-461.
DOI: 10.4153/cmb-1970-084-1
Google Scholar
[17]
H. Enomoto, A. S. Llado, T. Nakamigawa, and G. Ringel. Super edge-magic graphs. SUT J. Math., 34 (1998), 105-109.
DOI: 10.55937/sut/991985322
Google Scholar
[18]
Li, L., Alderson, D., Tanaka, R., Doyle, J.C., and Willinger, W. Towards A Theory Of Scale-Free Graphs: Definition, Properties, And Implications. Internet Mathematics Vol. 2, (4) (2005), 431-523.
DOI: 10.1080/15427951.2005.10129111
Google Scholar
[19]
B. Yao, X. -E. Chen, X. -Q. Zhou, J. -J. Zhang, X. -M. Zhang,M. Yao, M. -G. Li,J. -M. Xie. Graphs Related With Scale-free Networks. Second International Conference on Electronics, Communications, and Control (ICECC 2012, Zhoushan), Los Alamitos, California, Washington, Tokyo, Conference Publishing services, IEEE Computer Society,2012: 284-287.
Google Scholar
[20]
B. Yao, X. -Q. Zhou, J. -J. Zhang, X. -E. Chen, X. -M. Zhang, J. -M. Xie, M. Yao, M. -G. Li. Labellings And Invariants Of Models From Complex Networks. Proceeding of 2012 International Conference on Systems and Informa-tics, Yantai, China. IEEE catalog number: CFP1273R-CDR, ISBN: 978-1-4673-097-8. 2012: 1616-1620.
DOI: 10.1109/icsai.2012.6223350
Google Scholar