Laser Doppler Velocimetry Using Integrated Waveguide Technology

Article Preview

Abstract:

Integrated laser Doppler velocimeters (LDVs) using integrated waveguide technology are reviewed. LDVs have been widely used to measure the velocity of a fluid flow or rigid object in various research and industries. However, bulk optical systems used in conventional measurement need special care from temperature change and vibration, which become the expected sources of uncertainty in measurement, due to large optical path length. Therefore, the optical system should be more compact. The LDV can be drastically reduced by using a planar lightwave circuit (PLC). The possibility for realizing several types of novel integrated LDVs, including a wavelength-insensitive LDV, a scanning LDV and a multi-point LDV, is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

323-328

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. L. Duff, G. Plantier, J. -C. Valière, and T. Bosch, Analog sensor design proposal for laser Doppler velocimetry, IEEE Sensors J., vol. 4, no. 2, pp.257-261, Apr. (2004).

DOI: 10.1109/jsen.2004.823669

Google Scholar

[2] M. Haruna, K. Kasazumi, and H. Nishihara, Integrated-optic differential laser Doppler velocimeter with a micro Fresnel lens array, " Conf. Integ. & Guided-Wave Opt. (IGWO , 89) MBB6, (1989).

DOI: 10.1364/igwo.1989.mbb4

Google Scholar

[3] T. Ito, R. Sawada, and E Higurashi, Integrated microlaser Doppler velocimeter, J. Lightwave Technol., vol. 17, no. 1, pp.30-34, Jan. (1999).

DOI: 10.1109/50.737418

Google Scholar

[4] K. Maru and Y. Fujii, Integrated wavelength-insensitive differential laser Doppler velocimeter using planar lightwave circuit, J. Lightwave Technol., Vol. 27, No. 22, pp.5078-5083, Nov. (2009).

DOI: 10.1109/jlt.2009.2027214

Google Scholar

[5] M. Kawachi, Silica waveguides on silicon and their application to integrated-optic components, Optical and Quantum Electron., vol. 22, pp.391-416, (1990).

DOI: 10.1007/bf02113964

Google Scholar

[6] C. R. Doerr and K. Okamoto, Advances in silica planar lightwave circuits, IEEE J. Lightwave Technol., vol. 24, no. 12, pp.4763-4789, Dec. (2006).

DOI: 10.1109/jlt.2006.885255

Google Scholar

[7] M. K. Smit, New focusing and dispersive planar component based on an optical phased array, Electron. Lett., vol. 24, no. 7, pp.385-386, Mar. (1988).

DOI: 10.1049/el:19880260

Google Scholar

[8] H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution, Electron. Lett., vol. 26, no. 2, pp.87-88, Jan. (1990).

DOI: 10.1049/el:19900058

Google Scholar

[9] H. Takahashi, S. Suzuki, and I. Nishi, Wavelength multiplexer based on SiO2-Ta2O5 arrayed-waveguide grating, IEEE J. Lightwave Technol., vol. 12, no. 6, pp.989-995, Jun. (1994).

DOI: 10.1109/50.296189

Google Scholar

[10] H. Uetsuka, AWG technologies for dense WDM applications, J. Select. Topics Quantum Electron., vol. 10, no. 2, pp.393-402, Mar. /Apr. (2004).

DOI: 10.1109/jstqe.2004.827841

Google Scholar

[11] S. Kashimura, M. Takeuchi, K. Maru, and H. Okano, Loss reduction of GeO2-doped silica waveguide with high refractive index difference by high-temperature annealing, Jpn. J. Appl. Phys., vol. 39, Part 2, no. 6A, pp. L521-L523, (2000).

DOI: 10.1143/jjap.39.l521

Google Scholar

[12] F. Horst, C. Berendsen, R. Beyeler, G. -L. Bona, R. Germann, H. W. M. Salemink, and D. Wiesmann, Tunable ring resonator dispersion compensators realized in high-refractive-index contrast SiON technology, in Proc. ECOC 2000, Sep. 2000, Post Deadline Paper 2. 2.

DOI: 10.1109/68.841267

Google Scholar

[13] Y. Hibino, Recent advances in high-density and large-scale AWG multi/demultiplexer with higher index-contrast silica-based PLCs, IEEE J. Select. Topics Quantum Electron., vol. 8, no. 6, pp.1090-1101, Nov. /Dec. (2002).

DOI: 10.1109/jstqe.2002.805965

Google Scholar

[14] T. Shimoda, K. Suzuki, S. Takaesu, M. Horie, and A. Furukawa, A low-loss, compact wide-FSR-AWG using SiON planar lightwave circuit technology, in Proc. OFC, 2003, FJ1, p.703.

DOI: 10.1109/ofc.2003.316150

Google Scholar

[15] K. Maru, K. Matsui, H. Ishikawa, Y. Abe, S. Kashimura, S. Himi, and H. Uetsuka, Super-high-D athermal arrayed wavegide grating with resin-filled trenches in slab region, Electron. Lett., vol. 40, no. 6, pp.374-375, Mar. (2004).

DOI: 10.1049/el:20040273

Google Scholar

[16] K. Maru, Y. Abe, M. Ito, H. Ishikawa, S. Himi, H. Uetsuka, and T. Mizumoto, 2. 5%-D silica-based athermal arrayed waveguide grating employing spot-size converters based on segmented core, IEEE Photon. Technol. Lett., vol. 17, no. 11, pp.2325-2327, Nov. (2005).

DOI: 10.1109/lpt.2005.857233

Google Scholar

[17] K. Maru, T. Hakuta, Y. Abe, M. Ito, S. Himi, H. Uetsuka, and T. Mizumoto, Spot-size converter using vertical ridge taper for low fibre-coupling loss in 2. 5%-D silica waveguides, Electron. Lett., vol. 42, no. 4, pp.219-220, Feb. (2006).

DOI: 10.1049/el:20064182

Google Scholar

[18] K. Maru, T. Mizumoto, and H. Uetsuka, Demonstration of flat-passband multi/demultiplexer using multi-input arrayed waveguide grating combined with cascaded Mach-Zehnder interferometers, J. Lightwave Technol., vol. 25, no. 8, pp.2187-2197, Aug. (2007).

DOI: 10.1109/jlt.2007.901339

Google Scholar

[19] M. Uchiyama and K. Hakomori, A beam scanning LDV to measure velocity profile of unsteady flow, Precision Engineering, vol. 48, no. 7, pp.939-944, Jul. 1982. (in Japanese).

Google Scholar

[20] E.B. Li, A.K. Tieu, W.Y.D. Yuen, Measurements of velocity distributions in the deformation zone in cold rolling by a scanning LDV, Optics and Lasers in Engineering, vol. 35, pp.41-49, (2001).

DOI: 10.1016/s0143-8166(00)00100-7

Google Scholar

[21] K. Maru, Y. Fujii, T. Obokata, T. Ishima, P. P. Yupapin, N. Pornsuwancharoen, and T. Juthanggoon, Design of integrated scanning laser Doppler velocitmeter using arrayed waveguide gratings, Physics Procedia, Vol. 2, No. 1, pp.45-51, July (2009).

DOI: 10.1016/j.phpro.2009.06.008

Google Scholar

[22] K. Maru, K. Kobayashi, and Y. Fujii, Multi-point differential laser Doppler velocimeter using arrayed waveguide gratings with small wavelength sensitivity, Opt. Express, Vol. 18, No. 1, pp.301-308, Jan. (2010).

DOI: 10.1364/oe.18.000301

Google Scholar