Laser Doppler Velocimetry Using Integrated Waveguide Technology

Abstract:

Article Preview

Integrated laser Doppler velocimeters (LDVs) using integrated waveguide technology are reviewed. LDVs have been widely used to measure the velocity of a fluid flow or rigid object in various research and industries. However, bulk optical systems used in conventional measurement need special care from temperature change and vibration, which become the expected sources of uncertainty in measurement, due to large optical path length. Therefore, the optical system should be more compact. The LDV can be drastically reduced by using a planar lightwave circuit (PLC). The possibility for realizing several types of novel integrated LDVs, including a wavelength-insensitive LDV, a scanning LDV and a multi-point LDV, is discussed.

Info:

Periodical:

Edited by:

Yusaku Fuji and Koichi Maru

Pages:

323-328

Citation:

K. Maru and Y. Fujii, "Laser Doppler Velocimetry Using Integrated Waveguide Technology", Applied Mechanics and Materials, Vol. 36, pp. 323-328, 2010

Online since:

October 2010

Export:

Price:

$41.00

[1] A. L. Duff, G. Plantier, J. -C. Valière, and T. Bosch, Analog sensor design proposal for laser Doppler velocimetry, IEEE Sensors J., vol. 4, no. 2, pp.257-261, Apr. (2004).

DOI: https://doi.org/10.1109/jsen.2004.823669

[2] M. Haruna, K. Kasazumi, and H. Nishihara, Integrated-optic differential laser Doppler velocimeter with a micro Fresnel lens array, " Conf. Integ. & Guided-Wave Opt. (IGWO , 89) MBB6, (1989).

[3] T. Ito, R. Sawada, and E Higurashi, Integrated microlaser Doppler velocimeter, J. Lightwave Technol., vol. 17, no. 1, pp.30-34, Jan. (1999).

DOI: https://doi.org/10.1109/50.737418

[4] K. Maru and Y. Fujii, Integrated wavelength-insensitive differential laser Doppler velocimeter using planar lightwave circuit, J. Lightwave Technol., Vol. 27, No. 22, pp.5078-5083, Nov. (2009).

DOI: https://doi.org/10.1109/jlt.2009.2027214

[5] M. Kawachi, Silica waveguides on silicon and their application to integrated-optic components, Optical and Quantum Electron., vol. 22, pp.391-416, (1990).

DOI: https://doi.org/10.1007/bf02113964

[6] C. R. Doerr and K. Okamoto, Advances in silica planar lightwave circuits, IEEE J. Lightwave Technol., vol. 24, no. 12, pp.4763-4789, Dec. (2006).

DOI: https://doi.org/10.1109/jlt.2006.885255

[7] M. K. Smit, New focusing and dispersive planar component based on an optical phased array, Electron. Lett., vol. 24, no. 7, pp.385-386, Mar. (1988).

DOI: https://doi.org/10.1049/el:19880260

[8] H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution, Electron. Lett., vol. 26, no. 2, pp.87-88, Jan. (1990).

DOI: https://doi.org/10.1049/el:19900058

[9] H. Takahashi, S. Suzuki, and I. Nishi, Wavelength multiplexer based on SiO2-Ta2O5 arrayed-waveguide grating, IEEE J. Lightwave Technol., vol. 12, no. 6, pp.989-995, Jun. (1994).

DOI: https://doi.org/10.1109/50.296189

[10] H. Uetsuka, AWG technologies for dense WDM applications, J. Select. Topics Quantum Electron., vol. 10, no. 2, pp.393-402, Mar. /Apr. (2004).

DOI: https://doi.org/10.1109/jstqe.2004.827841

[11] S. Kashimura, M. Takeuchi, K. Maru, and H. Okano, Loss reduction of GeO2-doped silica waveguide with high refractive index difference by high-temperature annealing, Jpn. J. Appl. Phys., vol. 39, Part 2, no. 6A, pp. L521-L523, (2000).

DOI: https://doi.org/10.1143/jjap.39.l521

[12] F. Horst, C. Berendsen, R. Beyeler, G. -L. Bona, R. Germann, H. W. M. Salemink, and D. Wiesmann, Tunable ring resonator dispersion compensators realized in high-refractive-index contrast SiON technology, in Proc. ECOC 2000, Sep. 2000, Post Deadline Paper 2. 2.

DOI: https://doi.org/10.1109/68.841267

[13] Y. Hibino, Recent advances in high-density and large-scale AWG multi/demultiplexer with higher index-contrast silica-based PLCs, IEEE J. Select. Topics Quantum Electron., vol. 8, no. 6, pp.1090-1101, Nov. /Dec. (2002).

DOI: https://doi.org/10.1109/jstqe.2002.805965

[14] T. Shimoda, K. Suzuki, S. Takaesu, M. Horie, and A. Furukawa, A low-loss, compact wide-FSR-AWG using SiON planar lightwave circuit technology, in Proc. OFC, 2003, FJ1, p.703.

DOI: https://doi.org/10.1109/ofc.2003.316150

[15] K. Maru, K. Matsui, H. Ishikawa, Y. Abe, S. Kashimura, S. Himi, and H. Uetsuka, Super-high-D athermal arrayed wavegide grating with resin-filled trenches in slab region, Electron. Lett., vol. 40, no. 6, pp.374-375, Mar. (2004).

DOI: https://doi.org/10.1049/el:20040273

[16] K. Maru, Y. Abe, M. Ito, H. Ishikawa, S. Himi, H. Uetsuka, and T. Mizumoto, 2. 5%-D silica-based athermal arrayed waveguide grating employing spot-size converters based on segmented core, IEEE Photon. Technol. Lett., vol. 17, no. 11, pp.2325-2327, Nov. (2005).

DOI: https://doi.org/10.1109/lpt.2005.857233

[17] K. Maru, T. Hakuta, Y. Abe, M. Ito, S. Himi, H. Uetsuka, and T. Mizumoto, Spot-size converter using vertical ridge taper for low fibre-coupling loss in 2. 5%-D silica waveguides, Electron. Lett., vol. 42, no. 4, pp.219-220, Feb. (2006).

DOI: https://doi.org/10.1049/el:20064182

[18] K. Maru, T. Mizumoto, and H. Uetsuka, Demonstration of flat-passband multi/demultiplexer using multi-input arrayed waveguide grating combined with cascaded Mach-Zehnder interferometers, J. Lightwave Technol., vol. 25, no. 8, pp.2187-2197, Aug. (2007).

DOI: https://doi.org/10.1109/jlt.2007.901339

[19] M. Uchiyama and K. Hakomori, A beam scanning LDV to measure velocity profile of unsteady flow, Precision Engineering, vol. 48, no. 7, pp.939-944, Jul. 1982. (in Japanese).

[20] E.B. Li, A.K. Tieu, W.Y.D. Yuen, Measurements of velocity distributions in the deformation zone in cold rolling by a scanning LDV, Optics and Lasers in Engineering, vol. 35, pp.41-49, (2001).

DOI: https://doi.org/10.1016/s0143-8166(00)00100-7

[21] K. Maru, Y. Fujii, T. Obokata, T. Ishima, P. P. Yupapin, N. Pornsuwancharoen, and T. Juthanggoon, Design of integrated scanning laser Doppler velocitmeter using arrayed waveguide gratings, Physics Procedia, Vol. 2, No. 1, pp.45-51, July (2009).

DOI: https://doi.org/10.1016/j.phpro.2009.06.008

[22] K. Maru, K. Kobayashi, and Y. Fujii, Multi-point differential laser Doppler velocimeter using arrayed waveguide gratings with small wavelength sensitivity, Opt. Express, Vol. 18, No. 1, pp.301-308, Jan. (2010).

DOI: https://doi.org/10.1364/oe.18.000301