[1]
SHAO Fan, SUN Yu-he, LIANG Lanzhen, et al. Wind speed forecast for wind farms based on time series [J]. East China Electric Power, 2008, 36(7): 26-29.
Google Scholar
[2]
Bernhard L, Kurt R, Bernhard E, et al. Wind power prediction in Germany—recent advances and future challenges[C]. European Wind Energy Conference, Athens, (2006).
Google Scholar
[3]
FU Yang, HUO Shu-zhen, BIAN Xiao-yan, et al. Study on Small Signal Stability of Power System with Wind Power Integration Based on NEVA [J]. East China Electric Power, 2011, 39(3): 443-445.
Google Scholar
[4]
Zheng Guoqiang, Bao Hai, Chen Shuyong. Amending algorithm for wind farm penetration optimization based on approximate linear programming method[J]. Proceedings of the CSEE, 2004, 24(10): 68-71(in Chinese). 19(12): 1399-1402.
Google Scholar
[5]
ZHU Xue-ling, ZHANG Yang, GAO Kun, et al. Research on the compensation of reactive power for wind farms [J]. Power System Protection and Control, 2009, 37(16):68-76.
Google Scholar
[6]
Chen Shuyong, Dai Huizhu, Bai Xiaomin, et al. Reliability model of wind power plants and its application [J]. Proceedings of the CSEE, 2000, 20(3): 26-29.
DOI: 10.1109/icpst.1998.729277
Google Scholar
[7]
LUO Hai-yang, LIU Tianqi, LI Xingyuan. The chaos forecast method of short-term wind speed of the wind farm [J]. Power System Technology, 2009, 33(9).
Google Scholar
[8]
Khan A A, Shahidehpour M. One day-ahead wind speed forecasting using wavelets[C]. 2009 IEEE Power Systems Conference and Exposition. (2009).
DOI: 10.1109/psce.2009.4840129
Google Scholar
[9]
Ding Ming, Wu Yichun, Zhang Lijun. Study on the algorithm to the probabilistic distribution parameters of wind speed in wind farms [J] . Proceedings of the CSEE, 2005, 25(10): 107-110.
Google Scholar
[10]
LIU Taowen, LI Xiaojie. Economic dispatch of power system incorporating wind power plant [J]. Relay, 2007, 35(S1): 276-279.
Google Scholar
[11]
Alexiadis M C, Dokopoulos P S, Sahsamanoglou H S. Wind speed and power forecasting based on spatial correlation models. IEEE Transaction on Energy Conversion, 1999, 14(3): 836-842.
DOI: 10.1109/60.790962
Google Scholar
[12]
Mohamed Laid Hadjili, Vincent Wertz. Takagi-sugeno fuzzy modeling incorporating input variables selection [J]. IEEE Trans. on Fuzzy Systems, 2002, 10(6): 728-742.
DOI: 10.1109/tfuzz.2002.805897
Google Scholar
[13]
Smola A J, Scholkopf B. A tutorial on support vector regression [J]. Statistics and Computing, 2004, 14(3): 199-222.
DOI: 10.1023/b:stco.0000035301.49549.88
Google Scholar
[14]
Scholkopf B, Smola A J, Williamson R C, et al. New support vector algorithms [J] . Neural Computation, 2000, 12(5): 1207-1245.
DOI: 10.1162/089976600300015565
Google Scholar
[15]
Li Jing, Song Jiahua, Wang Weisheng. Modeling and dynamic simulation of variable speed wind turbine with large capacity [J] . Proceedings of the CSEE, 2004, 24(6): 100-105.
Google Scholar