Two-Step Fabrication of Nano-PbS on Peacock Feathers Inspired by a Hair-Dyeing Method Used in Ancient Egypt

Article Preview

Abstract:

A rapid method towards nanoPbS on peacock feathers was reported and this is inspired by a hair-dyeing technology used in Ancient Egypt thousands of years ago. Original peacock feather was sulfhydrylated by 2, 3-dimercaptosuccinic acid (DMSA) dissolved in alcohol to enhance reaction sites, and then was immersed in the saturated PbO solution in calcium hydroxide and got the PbS peacock feather. The whole process is only two steps and could be completed within two hours. The morphology and structures of the sample were measured by the X-ray diffraction (XRD), Scanning electron microscopy (SEM), and transmission electron microscope (TEM) and results showed that the structure of original peacock feather was well duplicated. Compared with previous works, this method is faster and more efficient and thus has potentials to fabricate other functional sulfides.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

737-741

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Shi, H. W. Yin, R. Y. Zhang, X. H. Liu, J. Zi, D. Y. Zhao: Macroporous Oxide Structures with Short-Range Order and Bright Structural Coloration: a Replication from Parrot Feather Barbs. J. Mater. Chem. 20, 90 (2010).

DOI: 10.1039/b915625a

Google Scholar

[2] R. O. Prum, R. H. Torres, S. Williamson, J. Dyck: Coherent Light Scattering by Blue Feather Barbs. Nature 396, 28 (1998).

DOI: 10.1038/23838

Google Scholar

[3] J. Han, H. L. Su, F. Song, J. -J. Gu, D. Zhang, L. M. Jang: Novel Photonic Crystals: Incorporation of Nano-CdS into the Natural Photonic Crystals within Peacock Feathers. Langmuir 25, 3207 (2009).

DOI: 10.1021/la803781v

Google Scholar

[4] J. Han, H. L. Su, C. F. Zhang, Q. Dong, W. Zhang, D. Zhang: Embedment of ZnO Nanoparticles in the Natural Photonic Crystals within Peacock Feathers. Nanotechnology 19, 365602 (2008).

DOI: 10.1088/0957-4484/19/36/365602

Google Scholar

[5] P. Walter, E. Welcomme, P. Hallegot, N. J. Zaluzec, C. Deeb, J. Castaing, P. Veyssiere, R. Breniaux, J. -L. Leveque, G. Tsoucaris: Early Use of PbS Nanotechnology for an Ancient Hair Dyeing Formula. Nano Lett. 6, 2215 (2006).

DOI: 10.1021/nl061493u

Google Scholar

[6] I. M. Weiss, H. O. K. Kirchner: Plasticity of Two Structural Proteins: Alpha-Collagen and Beta-Keratin. J. Mech. Behav. Biomed. 4, 733 (2011).

Google Scholar

[7] R. D. B. Fraser, D. A. D. Parry: Molecular Packing in the Feather Keratin Filament. J. Struct. Biol. 162, 1(2008).

Google Scholar

[8] A. Vasconcelos, G. Freddi, A. Cavaco-Paulo: Biodegradable Materials Based on Silk Fibroin and Keratin. Biomacromolecules 9, 1299 (2008).

DOI: 10.1021/bm7012789

Google Scholar

[9] C. I. Aguirre, E. Reguera, A. Stein: Tunable Colors in Opals and Inverse Opal Photonic Crystals. Adv. Funct. Mater. 20, 2565 (2010).

DOI: 10.1002/adfm.201000143

Google Scholar

[10] C. Zollfrank, H. Scheel: Regioselectively Ordered Silica Nanotubes by Molecular Templating. Adv. Mater. 19, 984 (2007).

DOI: 10.1002/adma.200601548

Google Scholar

[11] M. H. Kostova, C. Zollfrank, M. Batentschuk, F. Goetz-Neunhoeffer, A. Winnacker, P. Greil: Bioinspired Design of SrAl2O4: Eu2+ Phosphor. Adv. Funct. Mater. 19, 599 (2009).

DOI: 10.1002/adfm.200800878

Google Scholar

[12] Y. W. Tan, J. -J. Gu, X. N. Zang, W Xu, K. C. Shi, L. H. Xu, D. Zhang: Versatile Fabrication of Intact Three-Dimensional Metallic Butterfly Wing Scales with Hierarchical Sub-micrometer Structures. Angew. Chem. Int. Ed. 50, 8307 (2011).

DOI: 10.1002/anie.201103505

Google Scholar

[13] Y. W. Tan, J. -J. Gu, L. H. Xu, X. N. Zang, D. X. Liu, W. Zhang, Q. L. Liu, S. M. Zhu, H. L. Su, C. L. Feng, G. L. Fan, D. Zhang: High-Density Hotspots Engineered by Naturally Piled-Up Subwavelength Structures in Three-Dimensional Copper Butterfly Wing Scales for Surface-enhanced Raman Scattering Detection. Adv. Funct. Mater. 22, 1578 (2012).

DOI: 10.1002/adfm.201102948

Google Scholar

[14] Y. W. Tan, X. N. Zang, J. -J. Gu, D. X. Liu, S. M. Zhu, H. L. Su, C. L. Feng, Q. L. Liu, W. M. Lau, W. J. Moon, D. Zhang: Morphological Effects on Surface-enhanced Raman Scattering from Silver Butterfly Wing Scales Synthesized via Photoreduction. Langmuir 27, 11742 (2011).

DOI: 10.1021/la202445p

Google Scholar