Mechanical and Electrical Properties of the Polyaniline (PANI)/Polylactic Acid (PLA) Nonwoven Fabric

Article Preview

Abstract:

Technical development and rapid telecommunication create convenient consumer products, but produce electromagnetic radiation that hurts the human body, which makes the development of antistatic and electromagnetic-wave-resistant textiles important. This study combines polylactic acid (PLA) fibers and low melting point polylactic (LPLA) fibers by needle punching to make PLA nonwoven fabrics. The lamination layer number is then changed to explore its influence on the mechanical properties of the PLA nonwoven fabrics. Next, the nonwoven fabrics are spray-coated with polyaniline (PANI) to form the PANI/PLA nonwoven fabrics. The PANI/PLA nonwoven fabric with a lamination layer number of 5 has the optimum tensile and tear strength. A coating of PANI can reduce the surface resistivity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1074-1077

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Murariu, A. L. Dechief, L. Bonnaud, Y. Paint, A. Gallos, G. Fontaine, S. Bourbigot and P. Dubois, The production and properties of polylactide composites filled with expanded graphite, Polym. Degrad. Stabil. 95 (2010) 889-900.

DOI: 10.1016/j.polymdegradstab.2009.12.019

Google Scholar

[2] M. A. Sawpan, K. L. Pickering, A. Fernyhough, Flexural properties of hemp fibre reinforced polylactide and unsaturated polyester composites, Compos. Part A-Appl S. 43 (2012) 519-526.

DOI: 10.1016/j.compositesa.2011.11.021

Google Scholar

[3] L. M. Green, A. B. Miller, P. J. Villeneuve, D. A. Agnew, M. L. Greenberg, J. H. Li, K. E. Donnelly, A case-control study of childhood leukemia in Southern Ontario, Canada, and exposure to magnetic fields in residences, Int. J. Cancer. 82 (1999).

DOI: 10.1002/(sici)1097-0215(19990719)82:2<161::aid-ijc2>3.0.co;2-x

Google Scholar

[4] K. O: National Institute of Environmental Health Sciences, NC27709(1999).

Google Scholar

[5] G. J. Hyland, Physics and biology of mobile telephony, Lancet. 356 (2000) 1833-6.

Google Scholar

[6] C. H. Huang, J. H. Lin, R. B. Yang, C. W. Lin, C. W. Lou, Metal/PET Composite Knitted Fabrics and Composites: Structural Design and Electromagnetic Shielding Effectiveness, J. Electron. Mater. 41 (2012) 2267-2273.

DOI: 10.1007/s11664-012-2128-0

Google Scholar

[7] J. H. Lin, Y. T. Huang, C. M. Lin, Y. C. Yang, C. W. Lou, The Process and Property Characteristic of Electromagnetic Shielding Functional Warp Knitted Composite Fabrics, Advanced Materials Research. 287-290 (2011) 712-716.

DOI: 10.4028/www.scientific.net/amr.287-290.712

Google Scholar

[8] C. W. Lou, Y. C. Yang, C. M. Lin, C. W. Lin, L. C. Chen. J. H. Lin, The Influence of Fabric Structures of the Woven Fabrics on Electromagnetic Shielding Effectiveness, Advanced Materials Research. 239-242 (2011) 1994-(1997).

DOI: 10.4028/www.scientific.net/amr.239-242.1994

Google Scholar

[9] A. P. Chen, C. M. Lin, C. W. Lin, C. T. Hsieh, C. W. Lou, Y. H. Young. J. H. Lin, lectromagnetic Shielding Effectiveness and Manufacture Technique of Functional Bamboo Charcoal/ Metal Composite Woven, Advanced Materials Research. 123-125 (2010).

DOI: 10.4028/www.scientific.net/amr.123-125.967

Google Scholar

[10] C. M. Lin, Y. T. Huang, Y. C. Yang, C. W. Lin, C. W. Lou. J. H. Lin, Evaluation and Preparation of PET Aluminum Foil/ PLA Nonwoven Compound Fabric as Electromagnetic Shielding Effectiveness Protective Clothing, Advanced Materials Research. 123-125 (2010).

DOI: 10.4028/www.scientific.net/amr.123-125.471

Google Scholar