Compressive Strength of Porous Bone Cement/Polylactic Acid Composite Bone Scaffolds

Article Preview

Abstract:

Calcium phosphate bone cement (CPC), a bioceramic, is commonly used in artificial bone scaffold for impaired bones. In this study, CPC is mixed with polylactide (PLA) fibers and porogenic agent to form CPC/PLA composite bone scaffold. The compressive strength of the resulting bone scaffolds is evaluated and the fractured cross-section is observed by a scanning electron microscope (SEM), thereby determining the influence of fiber length. The experimental results show that the shorter the fiber is, the greater the compressive strength is.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1062-1065

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Peter, P. T. S. Kumar, N. S. B., Shanti V. Nair, H. Tamura, R. Jayakumar, Development of novel α-chitin/nanobioactive glass ceramic composite scaffolds for tissue engineering applications, Carbohydr. Polym. 78 (2009) 926-931.

DOI: 10.1016/j.carbpol.2009.07.016

Google Scholar

[2] J.H. Lin, C.H. Chang, Y.S. Chen, G.T. Lin, Formation of bone-like apatite on titanium filament by a simulated body fluid inducing process, Surf. Coat. Tech. 200 (2006) 3665 – 3669.

DOI: 10.1016/j.surfcoat.2005.04.010

Google Scholar

[3] R. Jayakumara, R. Ramachandrana, P.T. Sudheesh Kumara, V.V. Divyarania, S. Srinivasana , K. P. Chennazhia, H. Tamurab, S.V. Naira, Fabrication of chitin–chitosan/nano ZrO2 composite scaffolds for tissue engineering applications, Int. J. Biol. MacromoL. 49 (2011).

Google Scholar

[4] L.L. Hench, T.G. Lee, W.C. Allen, G. Piotrowski, An investigation of a prosthetic Material, U.S. Army, Med. Res. and Develop Command, Contract No. OA 10-70-C-001, 1970-(1975).

Google Scholar

[5] A.P. Gupta, V. Kumar, New emerging trends in synthetic biodegradable polymers – Polylactide: A critique, Eur. Polym. J. 43 (2007) 4053-4074.

DOI: 10.1016/j.eurpolymj.2007.06.045

Google Scholar

[6] J. F Bridges, M. Critchlow, M. P. Irving, S. C Purkiss, D. C Taylor, J. B Lloyd, Radiolabeling, stability, and body distribution in rats, of low molecular weight polylactide homopolymer and polylactide–polyethyleneglycol copolymer, Biomaterials. 21 (2000).

DOI: 10.1016/s0142-9612(99)00172-6

Google Scholar

[7] K. Madhavan Nampoothiri, Nimisha Rajendran Nair, Rojan Pappy John, An overview of the recent developments in polylactide (PLA) research, Thermochimica. Acta. 527 (2012) 1-7.

Google Scholar

[8] Y. Wu, Yongli Zheng, W. Yang, C.C. Wang, J.H. Hu, S. k. Fu, Synthesis and characterization of a novel amphiphilic chitosan–polylactide graft copolymer, Carbohydr. Polym. 50 (2005) 165-171.

DOI: 10.1016/j.carbpol.2004.09.006

Google Scholar

[9] J.D. Badía, L. Santonja-Blasco, R. Moriana, A. Ribes-Greus, Thermal analysis applied to the characterization of degradation in soil of polylactide: II. On the thermal stability and thermal decomposition kinetics Original Research, Polym. Degrad. Stabil. 95 (2010).

DOI: 10.1016/j.polymdegradstab.2010.06.002

Google Scholar