[1]
S. Iijima, Helical microtubules of graphitic carbon. Nature 354 (1991) 56–58.
DOI: 10.1038/354056a0
Google Scholar
[2]
M. Aydogdu, Vibration of multi-walled carbon nanotubes by generalized shear deformation theory. Int J Mech Sci 50 (2008) 837–844.
DOI: 10.1016/j.ijmecsci.2007.10.003
Google Scholar
[3]
J. Yoon, C.Q. Ru, A. Mioduchowski, Vibration of an embedded multiwall carbon nanotube. Compos Sci Technol 63 (2003) 1533–1542.
Google Scholar
[4]
C.Y. Wang, C.Q. Ru, A. Mioduchowski, Free vibration of multiwall nanotubes. J Appl Phys 97 (2005) 114323.
DOI: 10.1063/1.1898445
Google Scholar
[5]
T. Natsuki, Q.Q. Ni, M. Endo, Analysis of the vibration characteristics of double-walled carbon nanotubes. Carbon 46 (2008) 1570-1573.
DOI: 10.1016/j.carbon.2008.06.058
Google Scholar
[6]
K.Y. Xu, E.C. Aifantis, Y.H. Yan, Vibrations of Double-Walled Carbon Nanotubes With Different Boundary Conditions Between Inner and Outer Tubes. J Appl Mech 75 (2008) 021013.
DOI: 10.1115/1.2793133
Google Scholar
[7]
C.Y. Li, T.W. Chou, Vibrational behaviors of multiwalled-carbon-nanotube-based nanomechanical resonators. Appl Phys Lett 84 (2004) 121-123.
DOI: 10.1063/1.1638623
Google Scholar
[8]
C. Sun, K. Liu, Vibration of multi-walled carbon nanotubes with initial axial loading. Solid State Commun 143 (2007) 202–207.
DOI: 10.1016/j.ssc.2007.05.027
Google Scholar
[9]
C.M. Wang, V.B.C. Tan, Y.Y. Zhang, Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes. J Sound Vib 294 (2006) 1060–1072.
DOI: 10.1016/j.jsv.2006.01.005
Google Scholar
[10]
T. Belytschko, Y.Y. Lu, Element-free Galerkin method. Int J Numer Meth Eng 37 (1994) 229-256.
DOI: 10.1002/nme.1620370205
Google Scholar
[11]
S.N. Atluri, T. Zhu, A new meshless local Petrov-Galerkin(MLPG) approach in computational mechanics. Comput Mech 22 (1998) 117-127.
DOI: 10.1007/s004660050346
Google Scholar