Free Vibration Analysis of Carbon Nanotubes by Timoshenko Beam Model and Thin-Plate Spline Radial Basis Function

Article Preview

Abstract:

Timoshenko beam model and the meshless method based on thin-plate spline radial basis function are used to analyze the free vibration of carbon nanotubes. The natural frequencies of the carbon nanotubes with different length-to-diameter ratios and boudary conditions are compared with the results of published literatures which demonstrate the high accuracy of present method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1207-1210

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima, Helical microtubules of graphitic carbon. Nature 354 (1991) 56–58.

DOI: 10.1038/354056a0

Google Scholar

[2] M. Aydogdu, Vibration of multi-walled carbon nanotubes by generalized shear deformation theory. Int J Mech Sci 50 (2008) 837–844.

DOI: 10.1016/j.ijmecsci.2007.10.003

Google Scholar

[3] J. Yoon, C.Q. Ru, A. Mioduchowski, Vibration of an embedded multiwall carbon nanotube. Compos Sci Technol 63 (2003) 1533–1542.

Google Scholar

[4] C.Y. Wang, C.Q. Ru, A. Mioduchowski, Free vibration of multiwall nanotubes. J Appl Phys 97 (2005) 114323.

DOI: 10.1063/1.1898445

Google Scholar

[5] T. Natsuki, Q.Q. Ni, M. Endo, Analysis of the vibration characteristics of double-walled carbon nanotubes. Carbon 46 (2008) 1570-1573.

DOI: 10.1016/j.carbon.2008.06.058

Google Scholar

[6] K.Y. Xu, E.C. Aifantis, Y.H. Yan, Vibrations of Double-Walled Carbon Nanotubes With Different Boundary Conditions Between Inner and Outer Tubes. J Appl Mech 75 (2008) 021013.

DOI: 10.1115/1.2793133

Google Scholar

[7] C.Y. Li, T.W. Chou, Vibrational behaviors of multiwalled-carbon-nanotube-based nanomechanical resonators. Appl Phys Lett 84 (2004) 121-123.

DOI: 10.1063/1.1638623

Google Scholar

[8] C. Sun, K. Liu, Vibration of multi-walled carbon nanotubes with initial axial loading. Solid State Commun 143 (2007) 202–207.

DOI: 10.1016/j.ssc.2007.05.027

Google Scholar

[9] C.M. Wang, V.B.C. Tan, Y.Y. Zhang, Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes. J Sound Vib 294 (2006) 1060–1072.

DOI: 10.1016/j.jsv.2006.01.005

Google Scholar

[10] T. Belytschko, Y.Y. Lu, Element-free Galerkin method. Int J Numer Meth Eng 37 (1994) 229-256.

DOI: 10.1002/nme.1620370205

Google Scholar

[11] S.N. Atluri, T. Zhu, A new meshless local Petrov-Galerkin(MLPG) approach in computational mechanics. Comput Mech 22 (1998) 117-127.

DOI: 10.1007/s004660050346

Google Scholar