[1]
H. Mahmood, and A. Paluszny, Design of thin walled columns for crash energy management — their strength and mode of collapse, SAE Technical Paper 811302, (1981).
DOI: 10.4271/811302
Google Scholar
[2]
W. Abramowicz, and H. Jones, Dynamic axial crushing of square tubes, Int. J. Impact Eng. 2(2): 179-208, (1984).
DOI: 10.1016/0734-743x(84)90005-8
Google Scholar
[3]
A.G. Mamalis, D.E. Manolakos, A.K. Baldoukas, and G.L. Viegelahn, Energy dissipation and associated failure modes when axially loading polygonal thin-walled cylinders, Thin-Walled Struct. 12(1): 17-34, (1991).
DOI: 10.1016/0263-8231(91)90024-d
Google Scholar
[4]
A.G. Mamalis, D.E. Manolakos, M.B. Ioannidis, P.K. Kostazos et al., Finite element simulation of the axial collapse of metallic thin-walled tubes with octagonal cross-section, Thin-Walled Struct. 41(10): 891-900, (2003).
DOI: 10.1016/s0263-8231(03)00046-6
Google Scholar
[5]
W. Li, T. Tyan, G. Chen, X. Chen, et al., Numerical investigation of effects of frame trigger hole location on crash behavior, SAE Technical Paper 2005-01-0702, (2005).
DOI: 10.4271/2005-01-0702
Google Scholar
[6]
D.C. Han and S.H. Park, Collapse behavior of square thin-walled columns subjected to oblique loads, Thin-Walled Struct. 35(3): 167-184, (1999).
DOI: 10.1016/s0263-8231(99)00022-1
Google Scholar
[7]
G.M. Nagel, and D.P. Thambiratnam, Dynamic simulation and energy absorption of tapered thin-walled tubes under oblique impact loading, Int. J. Impact Eng. 32(10): 1595-1620, (2006).
DOI: 10.1016/j.ijimpeng.2005.01.002
Google Scholar
[8]
Z. Ahmada, D.P. Thambiratnamb and A.C.C. Tan, Dynamic energy absorption characteristics of foam-filled conical tubes under oblique impact loading, Int. J. Impact Eng. 37(5): 475-488, (2010).
DOI: 10.1016/j.ijimpeng.2009.11.010
Google Scholar
[9]
C. Qi, Z. -D. Ma, N. Kikuchi, C. Pierre, et al., Fundamental Studies on crashworthiness design with uncertainties in the system, SAE Technical Paper 2005-01-0613, (2005).
DOI: 10.4271/2005-01-0613
Google Scholar
[10]
C. Qi, S. Yang, and F. Dong, Crushing analysis and multiobjective crashworthiness optimization of tapered square tubes under oblique impact loading, Thin-Walled Struct. 59: 103-119, (2012).
DOI: 10.1016/j.tws.2012.05.008
Google Scholar
[11]
S. Hu, Z. -D. Ma, C. Qi, and P. Hu, Magic cube approach application on crashworthiness design of front rail in front angle impact, IEEE International Conference on Mechatronics and Automation: 3521-3526, (2009).
DOI: 10.1109/icma.2009.5246169
Google Scholar
[12]
C. Qi, Z. -D. Ma, N. Kikuchi, C. Pierre et al., A magic cube approach for crashworthinessdesign, SAE Technical Paper 2006-01-0671, (2006).
DOI: 10.4271/2006-01-0671
Google Scholar
[13]
Z. -D. Ma, H. Wang, N. Kikuchi, C. Pierre et al., Substructure design using a multi-domain multi-step topology optimization approach, SAE Technical Paper 2003-01-1303, (2003).
DOI: 10.4271/2003-01-1303
Google Scholar
[14]
Z. -D. Ma, H. Wang, N. Kikuchi, C. Pierre, and B. Raju, A multi-domain topology optimizations approach for structural and material designs, J. Appl. Mech. 73(4): 565-573, (2006).
DOI: 10.1115/1.2164511
Google Scholar
[15]
H. Wang, Z. -D. Ma, N. Kikuchi, C. Pierre et al., multi-domain multi-step topology optimization for vehicle structure crashworthiness design, SAE Technical Paper 2004-01-1173, (2004).
DOI: 10.4271/2004-01-1173
Google Scholar
[16]
RH Myers, DC Montgomery. Response surface methodology process and product optimization using designed experiments. New York: Wiley; (1995).
Google Scholar