Correction to the Wills-Harrison Approach: Influence on the First Minimum of the Effective Pair Interaction

Article Preview

Abstract:

An influence of the degree of account of the non-diagonal couplings between d electrons sited on different atoms in a transition metal on the main characteristics of the first minimums of the Wills-Harrison (WH) effective pair potentials in liquid Fe, Co and Ni are investigated. It is found that at full aforementioned account the WH potential is transformed to the simple-metal-pseudopotential-theory effective pair potential and that first-minimum positions of WH potentials abruptly shift to right side at predominance of the non-diagonal d-d-couplings in a metal.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

373-377

Citation:

Online since:

August 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.A. Harrison, Pseudopotentials in the Theory of Metals, Benjamin, New York, (1966).

Google Scholar

[2] J. Hafner, From Hamiltonians to Phase Diagrams – The Electronic and Statistical-Mechanical Theory of s, p Bonded Metals and Alloys, Springer, Berlin, (1987).

Google Scholar

[3] N.A. Vatolin, A.A. Yuryev, N. E. Dubinin, Calculation of the thermodynamic properties of liquid Na-K-Cs alloy by pseudopotential method, Dokl. Akad. Nauk 323 (1992) 880-884.

Google Scholar

[4] N.E. Dubinin, A.A. Yuryev, N.A. Vatolin, Thermodynamic properties of ternary liquid metal alloys, High Temperature Materials and Processes 14 (1995) 285-290.

DOI: 10.1515/htmp.1995.14.4.285

Google Scholar

[5] N.E. Dubinin, A.A. Yuryev, N.A. Vatolin, Thermodynamics of alkali-alkali liquid alloys. Calculation by pseudopotential method and thermodynamic perturbation theory, Thermochimica Acta 316 (1998) 123-129.

DOI: 10.1016/s0040-6031(98)00312-8

Google Scholar

[6] N.E. Dubinin, Alkali metals melts thermodynamics, J. Optoelectronics and Advanced Materials 5 (2003) 1259-1262.

Google Scholar

[7] N.E. Dubinin, A.A. Yuryev, N.A. Vatolin, Gibbs-Bogoliubov variational procedure with the square-well reference system, J. Non-Equilibrium Thermodynamics 35 (2010) 289-300.

DOI: 10.1515/jnetdy.2010.018

Google Scholar

[8] W.A. Harrison, Transition-metal pseudopotentials, Phys. Rev. 181 (1969) 1036-1053.

Google Scholar

[9] J.A. Moriarty, Pseudo Green's functions and the pseudopotential theory of d-band metals, Phys. Rev. B 5 (1972) 2066-(2081).

Google Scholar

[10] J.A. Moriarty, Density-functional formulation of the generalized pseudopotential theory. III. Transition-metal interatomic potentials, Phys. Rev. B 38 (1988) 3199-3231.

DOI: 10.1103/physrevb.38.3199

Google Scholar

[11] Y.K. Kovneristyi, N.A. Vatolin, E.G. Gurskaya, A.I. Landa, M.V. Romankevitch, A.A. Yuryev, Ab initio calculation of the thermodynamic properties of liquid alloys with the application to Ni-Al. Nonlocal resonant pseudopotential approach, J. Non-Cryst. Solids 117 (1990).

DOI: 10.1016/0022-3093(90)90601-h

Google Scholar

[12] A.I. Landa, A.A. Yuryev, A.V. Ruban, E.G. Gurskaya, Y.K. Kovneristyi, N.A. Vatolin, Pseudopotential calculation of thermodynamic properties and glass transition temperatures of binary Ni-Al alloys, J. Phys.: Condens. Matter 3 (1991) 9229-9243.

DOI: 10.1088/0953-8984/3/46/022

Google Scholar

[13] J.L. Bretonnet, M. Silbert, Interionic interactions in transition metals. Application to vanadium, Phys. Chem. Liq. 24 (1992) 169-176.

DOI: 10.1080/00319109208027266

Google Scholar

[14] N. Jakse, J.L. Bretonnet, Structure and thermodynamics of liquid transition metals: integral-equation study of Fe, Co and Ni, J. Phys.: Condens. Matter 7 (1995) 3803-3815.

DOI: 10.1088/0953-8984/7/20/002

Google Scholar

[15] N.E. Dubinin, L.D. Son, N.A. Vatolin, Thermodynamic properties of liquid binary transition-metal alloys in the Bretonnet-Silbert model, Defect and Diffusion Forum. 263 (2007) 105-110.

DOI: 10.4028/www.scientific.net/ddf.263.105

Google Scholar

[16] O.K. Andersen, Linear methods in band theory, Phys. Rev. B 12 (1975) 3060-3083.

Google Scholar

[17] W.A. Harrison, S. Froyen, Uniersal linear-combination-of-atomic-orbitals parameters for d-state solids, Phys. Rev. B 21 (1980) 3214-3221.

DOI: 10.1103/physrevb.21.3214

Google Scholar

[18] J.M. Wills, W.A. Harrison, Interionic interactions in transition metals, Phys. Rev. B 28 (1983) 4363-4373.

DOI: 10.1103/physrevb.28.4363

Google Scholar

[19] N.E. Dubinin, Account of non-diagonal coupling between d electrons at describing the transition-metal pair potentials, J. Phys.: Conf. Series 338 (2012) 012004.

DOI: 10.1088/1742-6596/338/1/012004

Google Scholar

[20] P. Vashishta, K. Singwi, Electron correlation at metallic densities, Phys. Rev. B 6 (1972) 875-887.

DOI: 10.1103/physrevb.6.875

Google Scholar

[21] N.E. Dubinin, L.D. Son, N.A. Vatolin, The Wills-Harrison approach to the thermodynamics of binary liquid transition-metal alloys, J. Phys.: Condens. Matter 20 (2008) 114111.

DOI: 10.1088/0953-8984/20/11/114111

Google Scholar

[22] Y. Waseda, The Structure of Non-crystalline Materials – Liquids and Amorphous Solids, McGraw-Hill, New York, (1981).

Google Scholar