Inorganic Nanoparticles Modified Molecular Beacons as Fluorescent DNA Biosensors

Article Preview

Abstract:

This study reports inorganic nanoparticles modified molecular beacons as fluorescent DNA biosensors. MBs were modified by using CdTe quantum dots as energy donors and 4-(4'-(dimethylamino) phenylazo) benzoic acid, black hole quencher 1 and Au nanoparticles as energy acceptors, respectively. CdTe quantum dots were linked to molecular beacons when 1-ethyl-3-(3-dimethylaminopropyl) carbodi-imide hydrochloride was added. The fluorescence intensity of the modified molecular beacons decreased tremendously compared to the fluorescence intensity of CdTe quantum dots, which indicated that the fluorescence resonance energy transfer occurred between the donors and acceptors. The results indicated that this type of molecular beacons has high specificity and can be used to distinguish complementary DNA and its mutants.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

111-114

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Semiconductor Nanocrystals as Fluorescent Biological Labels, Science, 281 (1998) 2013-(2016).

DOI: 10.1126/science.281.5385.2013

Google Scholar

[2] W.C. Chan and S. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science, 281 (1998) 2016-(2018).

DOI: 10.1126/science.281.5385.2016

Google Scholar

[3] P. Wu and L. Brand, Resonance energy transfer: methods and applications, Anal. Biochem, 218 (1994) 1-13.

Google Scholar

[4] D. M. Willard, L. L. Carillo, J. Jung, and A.V. Orden, CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay, Nano Lett, 1 (2001) 469-474.

DOI: 10.1021/nl015565n

Google Scholar

[5] M. Dahan, T. Laurence, F. Pinaud, D.S. Chemla, A.P. Alivisatos, M. Sauer, and S. Weiss, Time-gated biological imaging using colloidal quantum dots, Opt. Lett, 26 (2001) 825-827.

DOI: 10.1364/ol.26.000825

Google Scholar

[6] A. P. Alivisatos, Perpectives on the physical chemistry of semiconductor nanocrystals, J. Phys. Chem, 100 (1996) 13226-13239.

DOI: 10.1021/jp9535506

Google Scholar

[7] I. L. Medintz, A. R. Clapp, and H. Mattoussi, Self-assembled nanoscale biosensors based on quantum dot FRET donors, Nat. Mater, 2 (2003) 630-638.

DOI: 10.1038/nmat961

Google Scholar

[8] E. R. Goldman, A. R. Clapp, G. P. Anderson, H. T. Uyeda, J. M. Mauro, I. L. Medintz, and H. Mattoussi, Multiplexed toxin analysis using for colors of quantum dot fluroreagents, Anal. Chem, 76 (2004) 684-688.

DOI: 10.1021/ac035083r

Google Scholar

[9] E. Chang, J. S. Miller, J. Sun, W. W. Yu, V. L. Colvin, R. Drezek, and J. L. West, Protease-actived quantum dot probes, Biochem. Biophys. Res. Commun, 334 (2005) 1317-1321.

DOI: 10.1016/j.bbrc.2005.07.028

Google Scholar

[10] O. Noya, M. E. Patarroyo, F. Guzman, and B. Alarcon de Noya, Immunodiagnosis of Parasitic Diseases with Synthetic Peptides, Curr. Protein Peptide Sci, 4 (2003) 299-308.

DOI: 10.2174/1389203033487153

Google Scholar