Surface Modification and Characterization of Photodegradable Polystyrene-TiO2 Nanocomposites

Article Preview

Abstract:

In this study, polystyrene (PS) nanocomposites with TiO2 and surface-modified TiO2 nanoparticles were prepared by compression molding method. TiO2 nanoparticles were modified by 3-(methacryloxy) propyl trimethoxysilane (MPS). The resulting nanocomposite thick films were compared with pure polystyrene. It was found that MPS-modified TiO2 nanoparticles were better dispersed in PS matrix due to their hydrophobic characteristics. The addition of small amount of TiO2 nanoparticles could greatly decrease the optical bandgap of PS from 4.0 eV in pure PS to less than 3.0 eV in PS-TiO2 nanocomposite. The effects of surface modification and UVC irradiation on the physical properties and the degradation of nanocomposites were investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

128-131

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.K. Pandey, K.R. Reddy, A.P. Kumar, R.P. Singh, An overview on the degradability of polymer nanocomposites, Polym. Degrad. Stab. 898 (2005) 234-250.

Google Scholar

[2] X.D. Chen, Z. Wang, Z.F. Liao, Y.L. Mai, M.Q. Zhang, Role of anatase and rutile TiO2 nanoparticles in photooxidation of polyurethane, Polym. Test. 26 (2007) 202-208.

DOI: 10.1016/j.polymertesting.2006.10.002

Google Scholar

[3] E.B. Zeynalov, N.S. Allen, N.L. Calvet, J. Stratton, Impact of stabilizers on the thermal catalytic activity of micro- and nano-particulate titanium dioxide in oxidizing condensed mediums, Dyes Pigments 75 (2007) 315-327.

DOI: 10.1016/j.dyepig.2006.06.003

Google Scholar

[4] F.T. Li, D.S. Zhao, Q.Z. Luo, R.H. Liu, R. Yin, Research on surface-modification of Nano-TiO2 by span 60, J. Ceram. Process. Res. 9 (2008) 398-400.

Google Scholar

[5] B. Jaleh, M.S. Madad, S. Habibi, P. Wanichapichart, M.F. Tabrizi, Evaluation of physico-chemical properties of plasma treated PS-TiO2 nanocomposite film, Surf. Coat. Tech. 206 (2011) 947-950.

DOI: 10.1016/j.surfcoat.2011.03.136

Google Scholar

[6] A. Buasri, N. Chaiyut, C. Kritsanakun, C. Phatkun, T. Khunsri, Preparation and properties of nanocomposites based on poly (lactic acid) and modified TiO2, Adv. Mat. Res. 463-464 (2012) 519-522.

DOI: 10.4028/www.scientific.net/amr.463-464.519

Google Scholar

[7] K. Matsuyama, K. Mishima, Preparation of poly(methyl methacrylate)–TiO2 nanoparticle composites by pseudo-dispersion polymerization of methyl methacrylate in supercritical CO2, J. Supercrit. Fluids 49 (2009) 256-264.

DOI: 10.1016/j.supflu.2009.03.001

Google Scholar

[8] J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium, Phys. Status Solidi (b) 15 (1996) 627-637.

DOI: 10.1002/pssb.19660150224

Google Scholar

[9] B. Jaleha, M.S. Madada, M.F. Tabrizib, S. Habibia, R. Golbedaghic, M.R. Keymaneshd, UV-degradation effect on optical and surface properties of polystyrene-TiO2 nanocomposite film, J. Iran. Chem. Soc. 8 (2011) S161-S168.

Google Scholar