Controllability of Weakly Dependent Siphons under Elementary-Siphon Control

Article Preview

Abstract:

Monitors are added upon problematic siphons to avoid deadlocks. Li and Zhou add monitors to elementary siphons only while controlling the rest dependent siphons to save cost. After failing a Marking Linear Inequality (MLI) test, they perform a Linear Integer Programming (LIP) test (NP-hard). We proposed a new MLI test earlier to avoid the LIP and extended it to S3PGR2 (systems of simple sequential processes with general resource requirements) for strongly dependent siphons (SDS). The control policy for weakly dependent siphons (WDS) is rather conservative due to some negative terms in the MLI. This paper shows that WDS and SDS have the same controllability (i.e., MLI). As a result, the control for WDS needs no longer be that conservative. We also develop an optimization (by redundancy elimination) of the computation required for LIP test to ensure deadlock prevention of S3PR (Systems of Simple Sequential Processes with Resources). A favorable result for this policy is that any n-dependent (n>2) WDS (similar to SDS) needs no monitor and hence the complexity for synthesizing a controller becomes polynomial.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1413-1427

Citation:

Online since:

August 2013

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. K. Kumaran, W. Chang, H. Cho, and A. Wysk (1994). A structured approach to deadlock detection, avoidance and resolution in flexible manufacturing systems, International Journal of Production Research, 32(10), 2361-2379.

DOI: 10.1080/00207549408957073

Google Scholar

[2] Wysk, R.A., Y.N. Shu and J. Sanjay (1994), Resolution of deadlocks in flexible manufacturing systems: avoidance and recovery approaches, Journal of Manuf. Syst., 13(2), 128-136.

DOI: 10.1016/0278-6125(94)90028-0

Google Scholar

[3] B. Abdallah and H. A. ElMaraghy (1998). Deadlock prevention and avoidance in FMS: A Petri net based approach, International Journal of Advanced Manufacturing Technology, 14(10), 704-715.

DOI: 10.1007/bf01438223

Google Scholar

[4] Lautenbach, K. and H. Ridder (1996). The Linear Algebra of Deadlock Avoidance-A Petri Net Approach, Univ. Koblenz, Res. Rep. Insti. Comput. Sci., Koblenz, Germany.

Google Scholar

[5] Chao, D. Y. (2001).

Google Scholar

[6] Chao, D. Y. (2006). Computation of Elementary Siphons in Petri Nets for Deadlock Control. Comp. J., (British Computer Society), 49(4), 470-479.

DOI: 10.1093/comjnl/bxl019

Google Scholar

[7] Chao, D. Y. (2007). A graphic-algebraic computation of elementary siphons of BS3PR. J. Info. Sci. and Eng., 23(6), 1817-1831.

Google Scholar

[8] Ehrenfeucht, A. and G. Rozenberg (1990). Partial (set) 2-structures; part I: basic notions and the representation problem. Acta Informatica, 27, 315-342.

DOI: 10.1007/bf00264611

Google Scholar

[9] Ezpeleta, J., J. M. Colom and J. Martinez, (1995). A Petri net based deadlock prevention policy for flexible manufacturing systems. IEEE Trans. Robot. Automat., 11, 173-184.

DOI: 10.1109/70.370500

Google Scholar

[10] Li, Z. W. and M. C. Zhou. (2004). Elementary Siphons of Petri Nets and Their Application to Deadlock Prevention in Flexible Manufacturing Systems. IEEE Trans. Syst., Man, Cybern. A., 34(1), 38-51.

DOI: 10.1109/tsmca.2003.820576

Google Scholar

[11] Iordache, M. V., J. O. Moody and P. J. Antsaklis. (2001). A method for the synthesis liveness enforcing supervisors in Petri nets. In Proc. Amer. Control Conf., 4943-4948.

DOI: 10.1109/acc.2001.945768

Google Scholar

[12] Huang, Y. S. (2007). Design of deadlock prevention supervisors for FMS using Petri nets. Int J Adv Manuf Technol., 35(3-4), 349-362.

DOI: 10.1007/s00170-006-0708-y

Google Scholar

[13] Li, Z. W. and M. C. Zhou. (2006a). Two-stage method for synthesizing liveness-enforcing supervisors for flexible manufacturing systems using Petri nets. IEEE Transactions on Industrial Informatics, 2(4), 313-325.

DOI: 10.1109/tii.2006.885185

Google Scholar

[14] Li, Z. W. and M. C. Zhou. (2006b). Clarifications on the Definitions of Elementary Siphons in Petri Nets. IEEE Trans. Syst., Man, Cybern., A: Systems and Humans, 36(6), 1227-1229.

DOI: 10.1109/tsmca.2006.878966

Google Scholar

[15] Li, Z. W. and M. C. Zhou. (2008a). Control of Elementary and Dependent Siphons in Petri Nets and their Application. IEEE Trans. on Systems, Man, and Cybernetics: Part A, 38(1), 33-148.

DOI: 10.1109/tsmca.2007.909548

Google Scholar

[16] Li, Z. W. and M. Zhao (2008b). On Controllability of Dependent Siphons for Deadlock Prevention in Generalized Petri Nets. IEEE Transactions on Systems, Man, and Cybernetics, Part A, 38(2), 369-384.

DOI: 10.1109/tsmca.2007.914741

Google Scholar

[17] Li, Z. W. and M. C. Zhou. (2008c). On Siphon Computation for Deadlock Control in a Class of Petri Nets. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Human, 38(3), 667-679.

DOI: 10.1109/tsmca.2008.918605

Google Scholar

[18] Uzam, M. and M. C. Zhou (2006). An improved iterative synthesis approach for liveness enforcing supervisors of flexible manufacturing systems. Int J Prod Res 44(10), 1987-(2030).

DOI: 10.1080/00207540500431321

Google Scholar

[19] Chao, D. Y. (2010a). Improved controllability test for dependent siphons in S3PR based on elementary siphons. Asian Journal of Control, 12(3), 377 - 391, doi: 10. 1002/asjc. 217.

DOI: 10.1002/asjc.217

Google Scholar

[20] Chao, D. Y. (2010b). Conservative Control Policy for Weakly Dependent Siphons in S3PR Based on Elementary Siphons. IET Control Theory and Applications, 4(7), 1298-1302.

DOI: 10.1049/iet-cta.2009.0118

Google Scholar

[21] Chao, D. Y. (2010c). Fewer Monitors and More Efficient Controllability for Deadlock Control in S3PGR2 (systems of simple sequential processes with general resource requirements). Comp. J., (British Computer Society), doi: 10. 1093/comjnl/bxq007.

DOI: 10.1093/comjnl/bxq007

Google Scholar

[22] Chao, D. Y. (2011). Structure Of Weakly 2-Dependent Siphons. manuscript, 2011(see Appendix I).

Google Scholar