Experimental Investigation of CO2 Separation from Lignite Flue Gases by 100 cm2 Single Molten Carbonate Fuel Cell

Article Preview

Abstract:

The paper presents an experimental investigation of using a Molten Carbonate Fuel Cell (MCFC) for reducing CO2 emission from the flue gas of a lignite boiler. The MCFC is placed in the flue gas stream and separates CO2 from the cathode side to the anode side. As a result, a mixture of CO2 and H2O is obtained; from which pure CO2 can be obtained by cryogenic condensation of water and carbon dioxide. The main advantages of this solution are: additional electricity generated, reduced CO2 emissions and higher system efficiency. The results obtained show that the use of an MCFC could reduce CO2 emissions by 90% with over 30% efficiency in additional power generation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

299-303

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Kotowicz and T. Bartela, Optimisation of the connection of membrane ccs installation with a supercritical coal-fired power plant, Energy 38(1), p.118–127, (2012).

DOI: 10.1016/j.energy.2011.12.028

Google Scholar

[2] W. M. Budzianowski, An oxy-fuel mass-recirculating process for H2 production with CO2 capture by autothermal catalytic oxyforming of methane, International Journal of Hydrogen Energy 35(14), p.7454–7469, (2010).

DOI: 10.1016/j.ijhydene.2010.04.178

Google Scholar

[3] G. Wiciak and J. Kotowicz, Experimental stand for co2 membrane separation, Journal of Power Technologies 91(4), p.171–178, (2011).

Google Scholar

[4] J. Kupecki and K. Badyda, SOFC-based micro-CHP system as an example of efficient power generation unit, Archives of Thermodynamics 32(3), p.33–43, (2011).

DOI: 10.2478/v10173-011-0011-7

Google Scholar

[5] Łukasz Szabłowski, J. Milewski, J. Kuta, and K. Badyda, Strategia sterowania silnika tłokowego zasilanego gazem ziemnym pracującego w systemie energetyki rozproszonej, Rynek Energii 94(3), p.33, (2011).

Google Scholar

[6] R. Nomura, N. Iki, O. Kurata, M. Kawabata, A. Tsutsumi, E. Koda, and H. Furutani, System analysis of igfc with exergy recuperation utilizing low-grade coal, Proceedings of the ASME Turbo Expo 4, p.243–251, (2011).

DOI: 10.1115/gt2011-46282

Google Scholar

[7] C. -G. Lee, D. -H. Kim, and H. -C. Lim, Electrode reaction characteristics under pressurized conditions in a molten carbonate fuel cell, Journal of the Electrochemical Society 154(4), pp. B396–B404, (2007).

DOI: 10.1149/1.2434688

Google Scholar

[8] S. Campanari, Carbon dioxide separation from high temperature fuel cell power plants, Journal of Power Sources 112(1), p.273 – 289, (2002).

DOI: 10.1016/s0378-7753(02)00395-6

Google Scholar

[9] S. Campanari, P. Chiesa, and G. Manzolini, Co2 capture from combined cycles integrated with molten carbonate fuel cells, International Journal of Greenhouse Gas Control 4(3), p.441 – 451, (2010).

DOI: 10.1016/j.ijggc.2009.11.007

Google Scholar

[10] A. Amorelli, M. B. Wilkinson, P. Bedont, P. Capobianco, B. Marcenaro, F. Parodi, and A. Torazza, An experimental investigation into the use of molten carbonate fuel cells to capture co2 from gas turbine exhaust gases, Energy 29(9-10), p.1279 – 1284, (2004).

DOI: 10.1016/j.energy.2004.03.087

Google Scholar

[11] M. Lusardi, B. Bosio, and E. Arato, An example of innovative application in fuel cell system development: Co2 segregation using molten carbonate fuel cells, Journal of Power Sources 131(1-2), p.351 – 360, (2004).

DOI: 10.1016/j.jpowsour.2003.11.091

Google Scholar

[12] K. Sugiura, K. Takei, K. Tanimoto, and Y. Miyazaki, The carbon dioxide concentrator by using mcfc, Journal of Power Sources 118(1-2), p.218 – 227, (2003).

DOI: 10.1016/s0378-7753(03)00084-3

Google Scholar

[13] W. Jung-Ho, Contribution of fuel cell systems to co2 emission reduction in their application fields, Renewable and Sustainable Energy Reviews 14(2), p.735 – 744, (2010).

DOI: 10.1016/j.rser.2009.10.013

Google Scholar

[14] P. Chiesa, S. Campanari, and G. Manzolini, Co2 cryogenic separation from combined cycles integrated with molten carbonate fuel cells, International Journal of Hydrogen Energy 36(16), p.10355 – 10365, (2011).

DOI: 10.1016/j.ijhydene.2010.09.068

Google Scholar

[15] N. Xu, X. Li, M. A. Franks, H. Zhao, and K. Huang, Silver-molten carbonate composite as a new high-flux membrane for electrochemical separation of co2 from flue gas, Journal of Membrane Science , pp. –, (2012).

DOI: 10.1016/j.memsci.2012.02.001

Google Scholar

[16] G. Discepoli, G. Cinti, U. Desideri, D. Penchini, and S. Proietti, Carbon capture with molten carbonate fuel cells: Experimental tests and fuel cell performance assessment, International Journal of Greenhouse Gas Control 9, p.372–384, (2012).

DOI: 10.1016/j.ijggc.2012.05.002

Google Scholar

[17] J. Milewski, W. Bujalski, M. Wołowicz, K. Futyma, J. Kucowski, and R. Bernat, Experimental investigation of co2 separation from hard coal flue gases by 100 cm2 molten carbonate fuel cell, Applied Mechanics and Materials 302, p.97–103, (2013).

DOI: 10.4028/www.scientific.net/amm.302.97

Google Scholar