Optimal Charge and Discharge Capacity Effects of the Sintering Process on LiMn2O4 by the Solid-State Reaction Method

Article Preview

Abstract:

This study investigates the optimal charge and discharge capacity of the sintering process on the lithium battery spinel - LiMn2O4. Both Li2CO3 and Mn3O4 are utilized to synthesize the cathode material LiMn2O4 using the solid-state reaction. Cathode materials are processed to fabricate batteries at temperatures ranging from 800°C to 900°C. Test results reveal that the highest initial discharge capacity of 105.19 mAhg-1 (theoretically at 148 mAhg-1) has been obtained at the temperature of 850°C in the sintering process for synthesis of LiMn2O4. In addition, the initial discharge capacity can be increased to 140.51 mAhg-1 with both overdosing the amount of lithium by 2% and increasing the range of operating voltage. The increasing of the charge voltage ranges from 4.5V to 4.8V and reducing of the discharge voltage ranges from 3.0V to 2.8V.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

141-145

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. G. Ritchie, J. Power Sources Vol. 96(2001), p.180.

Google Scholar

[2] A. S. Hong, J. S. Kim, K. Jaehoon, J. Supercrit. Fluids Vol. 55(2011), p.1027.

Google Scholar

[3] R. Moshtev, P. Zlatilova, V. Manev, K. Tagawa, J. Power Sources Vol. 62(1996), p.59.

Google Scholar

[4] E. Shinova, T. Mandzhukova, E. Grigorova, Solid State Ion. Vol. 187(2011), p.43.

Google Scholar

[5] I. J. Davidsona, R. S. McMillana, J. Murraya, J. Power Sources Vol. 54(1995), p.232.

Google Scholar

[6] Y. Shimakawa, T. Numata, J. Tabuchi , J. Solid State Chem. Vol. 131(1997), p.138.

Google Scholar

[7] J. B. Goodenough , Annu. Rev. Mater. Sci. Vol. 28(1998), p.1.

Google Scholar

[8] M. Tabuchi, C. Masquelier, H. Kobayashi, R. Kanno, Y. Kobayashi, T. Akai, Y. Maki, H. Kageyama, O. Nakamura, J. Power Sources Vol. 68(1996), p.623.

DOI: 10.1016/s0378-7753(96)02592-x

Google Scholar

[9] R. Alcntara, M. Jaraba, P. Lavela, J. Tirado, J. Electrochem. Soc. Vol. 151(2004), p.53.

Google Scholar

[10] K. Hideki, F. Toyokiand, T. Kazuhisa, Electrochemi. Solid State Lett. Vol. 8(2005), p.87.

Google Scholar

[11] L. P. Rabou, A. Roskam, J. Power Sources Vol. 4(1995), p.316.

Google Scholar

[12] L. D. Cheng, Takahisa, M. Lian, Y. Masaki, J. Power Sources Vol. 132(2004), p.150.

Google Scholar

[13] R. Moshtev, P. Zlatilova, V. Manev, K. Tagawa, J. Power Sources Vol. 62(1996), p.59.

Google Scholar

[14] F. Yasuhiro, H. Miura, N. Suzuki, J. Power Sources Vol. 171(2007), p.894.

Google Scholar

[15] C. Vogler, A. Butz, H. Dittricj, G. Arnold, M. W. Mehrens, J. Power Sources Vol. 84(1999), p.243.

Google Scholar

[16] K.Y. Koyama, I. Tanaka, H. Adacki, J. Power Sources Vol. 19(2003), p.664.

Google Scholar

[17] M. Wakihara, L. Guohua, H. Ikuta, T. Uchida, Solid State Ion. Vol. 86(1996), p.907.

Google Scholar

[18] K. Amine, H. Tukamoto, H. Yasuda, Y. Fujita, J. Electrochem. Soc. Vol. 143(1996), p.1067.

Google Scholar

[19] K. Hayashi, Y. Nemoto, S. Tobishima, J. Yamaki, Electrochim. Acta. Vol. 44(1999), p.2337.

Google Scholar

[20] P. Zhang, L. Zhang, X. Ren, Q. Yuan, Synth. Met. Vol. 161(2011), p.1092.

Google Scholar

[21] J. M. Paulsen, J. R. Dahn, Chem. Mater. Vol. 11(1999), p.3065.

Google Scholar