The Influence of the Solvent on the Shape of the Titanium Dioxide Crystals during the Solvothermal Autoclave Synthesis

Article Preview

Abstract:

By the solvothermal synthesis the TiO2 nanocrystals with different shapes were obtained. It was found that the morphology of TiO2 nanoparticles determines the type of solvent and their crystallinity, and the size depends on the temperature and time of synthesis. The conditions are defined, under which the anatase nanocrystals are formed in the form of spherical particles with a diameter of 10-15 nm, cubic particles with a size of 50-70 nm and edges of nanowires with a diameter of 50-100 nm and a length of more than 100 microns.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

186-190

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Huimin, X. Wen-Jing, Zh. Lizhi, Zh. Zh, Zh. Hailu, F. Deng: The Journal of Physical Chemistry C Vol. 112(2008), pp.11379-11384.

Google Scholar

[2] A. Fujishima, X. Zhou, D.A. Tryk: Surf. Sci. Reports Vol. 63(2008), pp.515-582.

Google Scholar

[3] B.I. Kidjarov, V.V. Atuchin, N.V. Pervunina: The solid state physics Vol. 51(8) (2009), pp.1460-1463 (in Russia).

Google Scholar

[4] D.S. Shtarev, K.S. Makarevich, A.V. Syuy: Journal of Photochemistry & Photobiology A: Chemistry Vol. 222(1) (2011), pp.146-158.

Google Scholar

[5] N.V. Lebuhova, K.S. Makarevich, P.G. Chigrin, N.F. Karpovich: Russian Nanotechnology Vol. 5(11-12) (2010), pp.44-47 (in Russia).

Google Scholar

[6] M.A. Pugachevskij, V.G. Zavodinskij, A.P. Kuz`menko: The journal of the technical physics Vol. 81(2) (2011), pp.98-102 (in Russia).

Google Scholar

[7] M.A. Pugachevskij: The journal of the technical physics Letters Vol. 38(24) 2012, pp.53-59 (in Russia).

Google Scholar

[8] K. Mogyorosi, I. Dekany, J.H. Fendler: Langmuir Vol. 19(2003), pp.2938-2946.

Google Scholar

[9] T. Sugimoto, X. Zhou, and A. Muramatsu: Journal of Colloid and Interface Science Vol. 259 (2003), pp.43-52.

Google Scholar

[10] C. Lee, I. Kim, W. Choi, H. Shin, J. Cho: Langmuir Vol. 25(8) (2009), pp.4274-4278.

Google Scholar

[11] N.F. Karpovich, I.V. Korolkov, K.S. Makarevich, M.A. Pugachevsky, D.S. Shtarev, A.V. Syuy, V.V. Atuchin: Proceedings of International Conference and Seminar on Micro/Nanotechnology and Electron Devices, edited by P.V. Yatskevich, Novosibirsk State Technical University (2012).

DOI: 10.1109/edm.2012.6310181

Google Scholar

[12] J. L. Look, C. F. Zukoski: Journal of the American Ceramic Society Vol. 78, (1995), pp.21-32.

Google Scholar

[13] L. Bin, A. Khare, E.S. Aydil: ACS Appl. Mater. Interfaces Vol. 3 (2011), pp.4444-4450.

Google Scholar

[14] J. H. Jung, H. Kobayashi, K. J. C. van Bommel, S. Shinkai, T. Shimizu: Chem. Mater Vol. 14(2002), p.1445.

Google Scholar

[15] J. J. Qiu, W. D. Yu, X. D. Gao, X. M. Li: Nanotechnology Vol. 17(2006), p.4695.

Google Scholar

[16] C. B. Murray, C. R. Kagan, M. G. Bawendi: Annu. ReV. Mater. Sci Vol. 30(2000), p.545.

Google Scholar

[17] D. V. Bavykin, V. N. Parmon, A. A. Lapkin, F. C. J. Walsh: Mater. Chem Vol. 14(2004), p.3370.

Google Scholar