Silk Fibroin/Hyaluronic Acid Blend Film with Good Water Stability and Cytocompatibility

Article Preview

Abstract:

Stimulating cell proliferation is a challenge in the field of silk fibroin-based biomaterials. In this study, silk fibroin/hyaluronic acid blend films were prepared by a casting method using carbodiimide as a cross-linking agent. Carbodiimide induced silk fibroin to form Silk I crystal structure which was not affected by the presence of hyaluronic acid. The films showed high water resistance. In vitro, the performance of these films was assessed by seeding L929 cells. The results indicated that the silk fibroin/hyaluronic acid blend films with the blend ratio of 80/20 and 60/40 promoted cell proliferation compared with the pure silk fibroin or hyaluronic acid film. These results suggest that silk fibroin/hyaluronic acid blend films are water stable and cytocompatible materials which are expected to be useful in biomedical applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

209-214

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.S. Lammel, X. Hu, S.H. Park, D.L. Kaplan and T.R. Scheibel: Biomaterials Vol. 31 (2010), p.4583.

Google Scholar

[2] M. Lovett, C. Cannizzaro, L. Daheron, B. Messmer, G.V. Novakovic and D.L. Kaplan: Biomaterials Vol. 28 (2007), p.5271.

DOI: 10.1016/j.biomaterials.2007.08.008

Google Scholar

[3] Q. Zhang, Y.H. Zhao, S.Q. Yan, Y.M. Yang, H.J. Zhao, M.Z. Li, S.Z. Lu and D.L. Kaplan: Acta Biomater. Vol. 8 (2012), p.2628.

Google Scholar

[4] L. Meinel, O. Betz, R. Fajardo, S. Hofmann, A. Nazarian, E. Cory, M. Hilbe, J. McCool, R. Langer, G.V. Novakovic, H.P. Merkle, B. Rechenberg, D.L. Kaplan and C.K. Head: Bone Vol. 39 (2006), p.922.

DOI: 10.1016/j.bone.2006.04.019

Google Scholar

[5] E.J. Oh, K. Park, K.S. Kima, J. Kima, J. Ayang, J.H. Kong, M.Y. Lee, A.S. Hoffman and S.K. Hahn: J. Control. Release Vol. 141 (2010), p.2.

Google Scholar

[6] M. Fuente, B. Seijo and M.J. Alonso: Invest. Ophth. Vis. Sci. Vol. 49 (2008), p. (2016).

Google Scholar

[7] J. Campbell, N. Bellamy and T. Gee: Osteoarthritis and Cartilage Vol. 15 (2007), p.1424.

Google Scholar

[8] Y. Xie, Z. Upton, S. Richards, S.C. Rizzi and D.I. Leavesley: J. Control. Release Vol. 153 (2011), p.225.

Google Scholar

[9] Y.D. Park, N. Tirelli and J.A. Hubbell: Biomaterials Vol. 24 (2003), p.893.

Google Scholar

[10] Z. She, B. Zhang , C. Jin, Q. Feng and Y. Xu: Polym. Degrad. Stab. Vol. 93 (2008), p.1316.

Google Scholar

[11] M. Li, S. Lu, Z. Wu, H.J. Yan, J.Y. Mo, L.H. Wang: J. Appl. Polym. Sci. Vol. 79 (2001), p.2185.

Google Scholar

[12] Y.J. Yin, K.D. Yao, G.X. Cheng and J.B. Ma: Polymer International Vol. 48 (1999), p.429.

Google Scholar

[13] Y.L. Cui, A.D. Qi, W.G. Liu, X.H. Wang, H. Wang, D.M. Ma and K.D. Yao: Biomaterials Vol. 24 (2003), p.3859.

Google Scholar

[14] K. Webb, V. Hlady and P.A. Tresco: J. Biomed. Mater. Res. Vol. 41 (1998), p.422.

Google Scholar

[15] Y. Zhu, C. Gao and J. Shen: Biomaterials Vol. 23 (2002), p.4889.

Google Scholar