Effect of Nitrogen Electrolytes on Al2021 Alloy by Electrolytic Plasma Processing

Article Preview

Abstract:

AlON-Al2O3 coatings were prepared on Al2021 alloy by the electrolytic plasma processing (EPP) method. NaNO2, NaNO3 and NH4NO3 were chosen as nitrogen supply agents. The nitrogen inducing effect was studied by a combined composition and structure analysis of the coating layer carried out by X-ray diffractometer (XRD), scanning electron microscopy (SEM) for the specimens EPP-treated at room temperature for 15 min under a hybrid voltage of 260V DC plus 200V AC (50Hz) power. Microhardness tests and wear tests were carried out to correlate the evolution of microstructure and resulting mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

213-219

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Yamaguchi and H. Yanagida, Bull. Chem. Soc. Jpn., 32 (1959).

Google Scholar

[2] G. Long and L.M. Foster, J. Am. Ceram. Soc., 44 (1961).

Google Scholar

[3] I. Adams, T.R. Au Coin and G.A. Wolff, J. Electrochem. Soc., 109 (11) (1962).

Google Scholar

[4] A. Lejus, Rev. Int. Hautes Temp. Refract., 1(1) (1964).

Google Scholar

[5] A.L. Lefebvre, J.C. Giles and R. Collongues, Mater. Res. Bull., 7(6) (1972).

Google Scholar

[6] E. A Irene, V.J. Silvestri and G.R. Woolhouse, J. Electron. Mater., 4 (1975).

Google Scholar

[7] J.W. McCauley, and N.D. Corbin, High temperature reactions and microstructures in the Al2O3-AlN system. In progressin Nitrogen Ceramcs, ed. F.L. Riley. Martinus Nijhoff Pub., The Netherlands, (1983).

DOI: 10.1007/978-94-009-6851-6_8

Google Scholar

[8] J.W. Mccauley, K.M. Krishnan, R.S. Rai, G. Thomas, A. Zangvill, R.W. Doser and N.D. Corbin, In Ceramic Microstructures '86, ed. J. pask and A. Evans. Plenum Publishing Corp., (1988).

DOI: 10.1007/978-1-4613-1933-7_59

Google Scholar

[9] T. Sakai, Mater. Sci. Monogr., 14(1981).

Google Scholar

[10] E. Kollemberg and E. Ryman-Lipinska, Keramische Zeitschrift, 44(8) (1992).

Google Scholar

[11] Wang Xidong, Wang Fuming and Li Wenchao, Mater. Sci. Eng. A, 342(1/2) (2003).

Google Scholar

[12] W. Rafaniello and I. Cutler, J. Am. Ceram. Soc., 64(10) (1981).

Google Scholar

[13] D. Zientara, M.M. Bucko and J. Lis, J. Eur. Ceram. Soc., 27(2007).

Google Scholar

[14] D. Turpin-Launay, F. Thevenot, F. Delvoye and P. Boch, Reactive hot-pressing of aluminium oxynitride. In ceramic Powder, ed. P. Vincenzini Elsevier Sci. Pub. Co., (1983).

Google Scholar

[15] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews and S.J. Dowey. Review: plasma electrolysis for surface engineering. Surface and Coatings Technology., 73 (1999).

DOI: 10.1016/s0257-8972(99)00441-7

Google Scholar

[16] X. Nie, A. Leyland, H.W. Song, A.L. Yerokhin, S.J. Dowey, A. Matthews, Thickness effects on the mechanical properties of micro-arc discharge oxide coatings on aluminium alloys. Surface and Coatings Technology., 1055 (1999).

DOI: 10.1016/s0257-8972(99)00089-4

Google Scholar

[17] X.S. Gang, S.L. Xin, Z.R. Gen, H.X. Fang. Properties of aluminium oxide coating on aluminium alloy produced by micro-arc oxidation. Surface and Coatings Technology., 184 (2005).

DOI: 10.1016/j.surfcoat.2004.11.044

Google Scholar

[18] P. Tabary, C. Servant, J.A. Alary. Microstructure and phase transformations in the AlN–Al2O3 pseudo-binary system. Journal of the European Ceramic Society., 913 (2000) 20.

DOI: 10.1016/s0955-2219(99)00238-1

Google Scholar

[19] A.L. Yeronkhin, X. Nie, A. Leyland, A. Matthews and S.J. Dowey, Surf. Coat. Tech., 122, 73 (1999).

Google Scholar