Characterization of Heat-Resistant Geocement Based on Potassium Silica Solution

Article Preview

Abstract:

The aim of this paper is detailed description of synthesis geocement composite material based on K2O-Al2O3-SiO2 system and characterization its thermal properties. The series of analytic tools were used (XRF, XRD, SEM, BET, particle-size distribution) for accurate identification of chemical and physical properties of raw material. Optimum technological prescription was determined and geocement specimens were tested for identification of mechanical and thermal properties. Three series of specimens were heated up to 1000, 1100 and 1230°C and flexural strength was determined. The thermal analysis TMA and DMA were used for characterization of heat-resistant properties. The maximum shrinkage in the range 30-1000°C was for the first run in temperature rate 20°C/min. only 3%. The heating exposure at slower rate (3°C/min.) caused reduction of shrinkage up to 1.5% at 1000°C. Geocement represents attractive thermal properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

230-234

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.O. Purdon: The action of alkalis on blast-furnace slag, Journal of the Society of Chemical Industry Vol. 59 (1940), pp.191-202.

Google Scholar

[2] V.D. Glukhovsky: Gruntosilikaty (Grosstrojizdat, Ukraine, Kiev 1959).

Google Scholar

[3] V.D. Glukhovsky: Soil Silicate Articles and Structures ( Budivelnyk Publisher, Ukraine, Kiev 1967), p.156.

Google Scholar

[4] J. Davidovits: Geopolymers: inorganic polymeric new materials, Journal of Thermal Analysis 37 (8) (1991), p.1633–1656.

DOI: 10.1007/bf01912193

Google Scholar

[5] A. Palomo, F.P. Glasser: Chemically bonded cementitious materials based on metakaolin, Br. Ceram. Trans. J. 91 (1992), p.107–112.

Google Scholar

[6] L. Weng, K. Sagoe-Crentsil, T. Brown, S. Song: Effects of aluminates on the formation of geopolymers, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 117 (2) (2005), p.163–168.

DOI: 10.1016/j.mseb.2004.11.008

Google Scholar

[7] J.L. Provis, G.C. Lukey, J.S.J. van Deventer: Do geopolymers actually contain nanocrystalline zeolites? – A re-examination of existing results, Chemistry of Materials 17 (2005), pp.3075-3085.

DOI: 10.1021/cm050230i

Google Scholar

[8] P. Duxson, S.W. Mallicoat, G.C. Lukey, W.M. Kriven, J.S.J. van Deventer: The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers, Colloids and Surfaces A – Physicochemical and Engineering Aspects 292 (2007).

DOI: 10.1016/j.colsurfa.2006.05.044

Google Scholar

[9] A. Fernández-Jiménez, A. Palomo, M. Criado: Alkali activated fly ash binders. A comparative study between sodium and potassium activators, Materiales de Construcción 56 (2006), pp.51-65.

DOI: 10.3989/mc.2006.v56.i281.92

Google Scholar

[10] A. Fernández-Jiménez, D.E. Macphee, E.E. Lachowski, A. Palomo: Immobilization of cesium in alkaline activated fly ash matrix, Journal of Nuclear Materials 346 (2005), pp.185-193.

DOI: 10.1016/j.jnucmat.2005.06.006

Google Scholar

[11] C. Shi, P.V. Krivenko, D.M. Roy: Alkali-Activate Cements and Concretes (Taylor and Francis, Abingdon, The United Kingdom 2006).

Google Scholar

[12] F. Pacheco-Torgal, J. Castro-Gomes, S. Jalali: Alkali-activated binders: A review: Part 2. About materials and binders manufacture, Construction and Building Materials 22 (2008), pp.1315-1322.

DOI: 10.1016/j.conbuildmat.2007.03.019

Google Scholar

[13] A. Fernandéz-Jimenéz, A. Palomo, M.M. Alonso: Alkali activation of fly ashes: mechanisms of reaction, Proceeding Non traditional Cement and Concrete (CZ, Brno 2005), pp.13-14.

Google Scholar

[14] S. S. Kouassi, M. T. Tognonvi, J. Soro, S. Rossignol: Consolidation mechanism of materials obtained from sodium silicate solution and silica-based aggregates, Journal of Non-Crystalline Solids 357 (2011), pp.3013-3021.

DOI: 10.1016/j.jnoncrysol.2011.04.006

Google Scholar

[15] C. Shi, A. Fernandéz-Jimenéz, A. Palomo: New cements for the 21st century: The pursuit of an alternative to Portland cement, Cement and Concrete Research 41 (2011), pp.750-763.

DOI: 10.1016/j.cemconres.2011.03.016

Google Scholar

[16] V.F.F. Barbosa, K.J.D. MacKenzie: Synthesis and thermal behaviour of potassium sialate geopolymers, Materials Letters 57 (2003), pp.1477-1482.

DOI: 10.1016/s0167-577x(02)01009-1

Google Scholar

[17] P. Duxson, G.C. Lukey, J.S.J. van Deventer: Thermal evolution of metakaolin geopolymers: Part 1 – Physical evolution, Journal of Non-crystalline Solids 352 (2006), pp.2186-2200.

DOI: 10.1016/j.jnoncrysol.2006.09.019

Google Scholar

[18] F.L. Roberts, P.S. Kandhal, E.R. Brown, D. Y Lee, T.W. Kennedy: Hot Mix Asphalt Materials, Mixture Design and Construction (National Asphalt Pavement Association Education Foundation, Lanham, 1996).

Google Scholar