Facile Synthesis of ZnO Nanoparticles Using Mechanochemical Route and their Structural, Morphological and Thermal Properties

Article Preview

Abstract:

In the present work, we have prepared ZnO nanoparticles by a two-step mechanochemical synthesis method. The reaction was carried out in a paste state at room temperature with a short grinding time of 20 min. The prepared ZnO nanoparticles were characterized by using x-ray diffraction (XRD), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis-differential thermal analysis (TGA/DTA). XRD and TEM results demonstrated that ZnO have a single phase nature with wurtzite structure with high crystallinity. The lattice parameters calculated from XRD pattern are a= 3.25 Å and c= 5.248 Å and the average grain size of the ZnO nanoparticles was found to be ~ 20 nm (TEM) or ~22 nm (XRD). FTIR spectra demonstrated the peak at ~455 cm-1 which correspond to stretching mode of ZnO.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

220-224

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Bougrine, A.E. Hichou, M. Addou, J. Ebothe, A. Kachouane and M. Troyon: J. Mater. Chem. Phys, Vol. 80 (2003), p.438.

Google Scholar

[2] T.L. Yang, D.H. Zhang, J. Ma, H.L. Ma and Y. Chen: Thin Solid Films, Vol. 326 (1998), p.60.

Google Scholar

[3] J.F. Cordaro, Y. Shim and J.E. May: J. Appl. Phys, Vol. 60 (1986), p.4186.

Google Scholar

[4] M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber and R. Russo: Science, Vol. 292 (2001), p.1897.

Google Scholar

[5] J.C. Johnson, H. Yan, R.D. Schaller, P.B. Petersen, P. Yang, R.J. Saykally: Nano Lett., Vol. 2 (2002), p.279.

Google Scholar

[6] Z.W. Pan, Z.R. Dai, Z.L. Wang: Science, Vol. 291 (2001), p. (1947).

Google Scholar

[7] K. Govender, D.S. Boyle, P.O. Brien, D. Binks, D. West and D. Coleman: Adv. Mater, Vol. 14 (2002), p.1221.

Google Scholar

[8] J.Y. Lao, J.G. Wen and Z.F. Ren: Nano Lett., Vol. 2 (2002), p.1287.

Google Scholar

[9] F. Ahmed, S. Kumar, N. Arshi, M.S. Anwar, B.H. Koo and C.G. Lee: Functional Materials Letter, Vol. 4 (1) (2011), p.1.

Google Scholar

[10] F. Ahmed, S. Kumar, N. Arshi, M.S. Anwar, B.H. Koo and C.G. Lee: Microelectronic Engineering, Vol. 89 (2012), p.129.

Google Scholar

[11] S.T. He, J.N. Yao, P. Jiang, D.X. Shi, H.X. Zhang, S.S. Xie, S.J. Pang, H.J. Gao: Langmuir, Vol. 17 (2001), p.1571.

Google Scholar

[12] Q.P. Zhong and E. Matijevic: J. Mater. Chem, Vol. 6 (1996), p.443.

Google Scholar

[13] S. Sakohara, L.D. Tickanen and M.A. Anderson: J. Chem. Eng. Japan, Vol. 25 (1992), p.598.

Google Scholar

[14] A. Chittofrati and E. Matijevic: J. Colloids Surf, Vol. 48 (1990), p.65.

Google Scholar

[15] D.W. Bahnemann, C. Kormann and M.R. Hoffmann: J. Phys. Chem, Vol. 91 (1987), p.3789.

Google Scholar

[16] R.V. Kumar, Y. Diamant and A. Gedanken: J. Chem. Mater., Vol. 12 (2000), p.2301.

Google Scholar

[17] J. Zhang, L.D. Sun, J.L. Yin, H.L. Su, C.S. Liao and C.H. Yan: Chem. Mater, Vol. 14 (2002), p.4172.

Google Scholar

[18] W.J. Li, E.W. Shi, Y.Q. Zheng and Z.W. Yin: J. Mater. Sci. Lett, Vol. 20 (2001), p.1381.

Google Scholar

[19] C. Pacholski, A. Kornowski and H. Weller: Angew. Chem. Int. Edn, Vol. 41 (2002), p.1188.

Google Scholar

[20] H.P. Klug and L.E. Alexander: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 1st edn, chapter 9, (New York, Wiley 1954).

Google Scholar

[21] R.F. Silva and M.E.D. Zaniquelli: J. Colloid Surf. A, Vol. 551 (2002), p.198.

Google Scholar