Manufacturing Automobile B Pillar by a Digitized Hot Stamping Production System

Article Preview

Abstract:

For the manufacturing of high strength automobile body safety parts, a digitally controlled pilot production system for the hot stamping process was developed, including an electro-servo press, a numerically controlled heating furnace, a blank conveying system and a synchronized production line control system. By using the in-house developed hot stamping production system, automobile B pillars were manufactured from a proprietary high strength steel developed by Wuhan Iron and Steel (Group) Corporation. The steel blank was austenized in the furnace at 950°C for 5 min, followed by hot stamping. The overall cooling rate of the heated blank was above 35°C s-1 during the hot stamping process, which ensured a uniform martensitic microstructure with an average hardness above 460 HV1, a room temperature of tensile strength of 1489MPa and an elongation of 6.87%. The deviation of the formed part from the 3-D model is in the range between +0.623mm ~ -0.826mm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

397-402

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.M. Shi, K. Liu, M.Q. Wang, J. Shi, H. Dong, J. Pu, B. Chi, Y.S. Zhang, J. Li: Mater. Sci. Eng. A Vol. 528 (2011), p.3681.

Google Scholar

[2] Z.M. Shi, K. Liu, M.Q. Wang, J. Shi, H. Dong, J. Pu, B. Chi, Y.S. Zhang, J. Li: Met. Mater. Int Vol. 18 (2012), p.317.

Google Scholar

[3] Z.M. Shi, K. Liu, M.Q. Wang, J. Shi, H. Dong, J. Pu, B. Chi, Y.S. Zhang, J. Li: Mater. Sci. Eng. A Vol. 535 (2012), p.290.

Google Scholar

[4] H. Hoffmann, H. So and H. Steinbeiss: CIRP Ann. —Manuf. Technol Vol. 56 (2007), p.269.

Google Scholar

[5] R. Kolleck, R. Veit, M. Merklein, J. Lechler, M. Geiger: CIRP Ann. —Manuf. Technol Vol. 58 (2009), p.275.

DOI: 10.1016/j.cirp.2009.03.090

Google Scholar

[6] K. Mori, S. Maki and Y. Tanaka: CIRP Ann. —Manuf. Technol Vol. 54 (2005), p.209.

Google Scholar

[7] K. Osakada, K. Mori, T. Altan, P. Groche: CIRP Ann. —Manuf. Technol Vol. 60 (2011), p.651.

Google Scholar

[8] S. Kaya and T. Altan: Proceedings of the Asme International Manufacturing Science and Engineering Conference 2010 2011; 1: 687-94.

Google Scholar

[9] C. f. Meng, C. Zhang, Y.H. Lu, Z.G. Shen: Mech. Mach. Theory Vol. 39 (2004), p.811.

Google Scholar

[10] C.H. Li and P.L. Tso: Int. J. Mach. Tool Manu Vol. 48 (2008), p.209.

Google Scholar

[11] P Groche. Scheitza M, M. Kraft, S. Schmitt: CIRP Ann. —Manuf. Technol Vol. 59 (2010), p.267.

Google Scholar

[12] R.X. Du, W.Z. Guo: J. Mech. Design Vol. 125 (2003), p.582.

Google Scholar

[13] W.H. Hsieh and C.H. Tsai: Mech. Mach. Theory Vol. 46 (2011), p.239.

Google Scholar

[14] P.L. Tso and K.C. Liang: Int. J. Mach. Tool Manu Vol. 42 (2002), p.139.

Google Scholar

[15] W.M. Hwang, Y.C. Hwang and S.T. Chiou: Int. J. Mach. Tool Manu. Vol. 35 (1995), p.1425.

Google Scholar

[16] S. Yossifon, R. Shivpuri: Int. J. Mach. Tool Manu. Vol. 33 (1993), p.175.

Google Scholar

[17] S. Yossifon, R. Shivpuri: Int. J. Mach. Tool Manu. Vol. 33 (1993), p.193.

Google Scholar

[18] S. Yossifon, R. Shivpuri: Int. J. Mach. Tool Manu. Vol. 33 (1993), p.209.

Google Scholar

[19] J.H. Mo, Y. Lv, E.H. Du. H.B. Huang: China Metal Forming Equipment Manu. Technol Vol. 1 (2011), p.21.

Google Scholar