[1]
Antonija Lesar, Milan Hodošček, Evangelos Drougas, et al. Quantum Mechanical Investigation of the Atmospheric Reaction CH3O2 + NO. [J]. J. Phys. Chem. A, 2006 (110) 7898-7903.
DOI: 10.1021/jp0614244
Google Scholar
[2]
Joseph S. Francisco, John N. Crowley. Theoretical Investigation of Product Channels in the CH3O2 + Br Reaction. [J]. J. Phys. Chem. A, 2006(110) 3778-3784.
DOI: 10.1021/jp056794r
Google Scholar
[3]
Alecia M. English, Jaron C. Hansen, Joseph J. Szent et al. The Effects of Water Vapor on the CH3O2 Self-Reaction and Reaction with HO2. [J]. J. Phys. Chem. A, 2008(112) 9220-9228.
Google Scholar
[4]
G. S. Tyndall, T. J. Wallington and J. C. Ball. FTIR Product Study of the Reactions CH3O2 + CH3O2 and CH3O2 + O3. [J]. J. Phys. Chem. A, (1998) 2547-2554.
Google Scholar
[5]
H. Niki, P. D. Maker, C. M. Savage, L. P. Breitenbach. Fourier-transform infrared studies of the self-reaction of CH3O2 radicals. [J]. J. Phys. Chem., 1981(85) 877-881.
DOI: 10.1021/j150607a028
Google Scholar
[6]
Evangelos Drougas, Abraham F. Jalbout, Agnie M. Kosmas. Quantum Mechanical Studies of CH3ClO3 Isomers and the CH3O2+ClO Reaction Pathways. [J]. J. Phys. Chem. A, 2003(107) 11386-11390.
DOI: 10.1021/jp030757n
Google Scholar
[7]
Evangelos Drougas, Agnie M. Kosmas. Ab Initio Characterization of (CH3IO3) Isomers and the CH3O2 + IO Reaction Pathways. [J]. J. Phys. Chem. A, 2007(111) 3402-3408.
DOI: 10.1021/jp068348p
Google Scholar
[8]
Josep M. Anglada, Santiago Olivella, Albert Solé. Mechanistic Study of the CH3O2 + HO2 → CH3O2H + O2 Reaction in the Gas Phase. [J]. J. Phys. Chem. A, 2006(110) 6073–6082.
DOI: 10.1021/jp060798u.s001
Google Scholar
[9]
E. Drougas, A.M. Kosmas. Quantum mechanical studies on the potential energy surface of the reactions CH3+OClO, CH3O+ClO and CH3O2+Cl. [J]. Chemical Physics Letters, 2003(369) 269-274.
DOI: 10.1016/s0009-2614(02)01981-4
Google Scholar
[10]
Agnie M. Kosmas, Evangelos Drougas. A computational investigation of the atmospheric reaction CH3O2 + ClO. [J]. Chemical Physics, 2009(358) 230-234.
DOI: 10.1016/j.chemphys.2009.02.005
Google Scholar
[11]
A.F. Jalbout, Z. Zhou, X.H. Li, Y. Shi, A. Kosmas. The self-reaction of methylperoxy radicals: A theoretical study. [J]. Chemical Physics Letters, 2006(420) 215-220.
DOI: 10.1016/j.cplett.2005.11.114
Google Scholar
[12]
Kimberley E. Leather, Asan Bacak, Ruth Wamsley, et al. Temperature and pressure dependence of the rate coefficient for the reaction between ClO and CH3O2 in the gas-phase[J]. Phys. Chem. Chem. Phys., 2011(13) 20794-20805.
DOI: 10.1039/c2cp22834c
Google Scholar
[13]
Xueli Cheng, Zhengyu Zhou, Yanyun Zhao, et al. Mechanistic and dynamic investigations for multi-channel reaction of CH3O2 +NO. [J]. Journal of Molecular Structure: THEOCHEM, 2005(725) 103-109.
DOI: 10.1016/j.theochem.2005.02.066
Google Scholar
[14]
Asan Bacak, Max W. Bardwell, M. Teresa Raventós-Duran, et al. Kinetics of the CH3O2 + NO2 reaction: A temperature and pressure dependence study using chemical ionisation mass spectrometry . [J]. Chemical Physics Letters, 2006(419) 125-129.
DOI: 10.1016/j.cplett.2005.11.070
Google Scholar
[15]
Terry J. Dillon, María E. Tucceri, John N. Crowley. Laser induced fluorescence studies of iodine oxide chemistry. Part II. The reactions of IO with CH3O2, CF3O2 and O3. [J]. Phys. Chem. Chem. Phys., 2012(14) 3425-3434.
DOI: 10.1039/b611116e
Google Scholar
[16]
M. J. Frisch, G.W. Trucks, et al. Gaussian 03, Revision E. 01, Gaussian, Inc., Wallingford, CT, (2004).
Google Scholar
[17]
C. Gonzalez, H. B. Schlegel. Reaction path following in mass-weighted internal coordinates. [J]. J. Phys. Chem. 1990 (94) 5523-5527.
DOI: 10.1021/j100377a021
Google Scholar
[18]
M. W. Jr. Chase. NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data. 1998 (9) 1-(1951).
Google Scholar