[1]
Navneet Kumar, et al. Titanium Diboride Thin Films by Low-Temperature Chemical Vapor Deposition from the Single Source Precursor Ti(BH4)3(1, 2-dimethoxyethane). Chem. Mater, 2007, pp.3802-3807.
DOI: 10.1021/cm070277z.s001
Google Scholar
[2]
Zhaohui Zhang, et al. Low-temperature densification of TiB2 ceramic by the spark plasma sintering process with Ti as a sintering aid. Scripta Materialia, 2012, pp.167-170.
DOI: 10.1016/j.scriptamat.2011.10.030
Google Scholar
[3]
N.J. Welham. Mechanical enhancement of the carbothermic formation of TiB2. Metallurgical and Materials Transactions, 2000, pp.283-289.
DOI: 10.1007/s11661-000-0072-8
Google Scholar
[4]
A.G. Merzhanov, I.P. Borovinskaya. Self-propagating high-temperature synthesis of refractory inorganic compounds. Dokl Akad Nauk SSSR, 1972, pp.366-369.
Google Scholar
[5]
Yeon Hwang, et al. Preparation of TiB2 powders by mechanical alloying. Materials Letters, 2002, pp.1-7.
Google Scholar
[6]
Davies T J, Ogwu A A. TiC plus TiB2 composite shows wear promise [J]. Metal Powder Report, 1997, pp.31-34.
DOI: 10.1016/s0026-0657(97)86574-5
Google Scholar
[7]
Akhtar F. Microstructure evolution and wear properties of in situ synthesized TiB2 and TiC reinforced steel matrix composites. Journal of Alloys and Compounds, 2008, pp.491-497.
DOI: 10.1016/j.jallcom.2007.05.018
Google Scholar
[8]
Fancheng Meng, et al. Densification Mechanism of TiB2 Ceramics Prepared by the Self-propagating High-temperature Synthesis/Quick Pressing Method. Journal of the Chinese Ceramic Society, 2007, pp.430-434.
Google Scholar
[9]
Umut Demircan, et al. Effect of HCl concentration on TiB2 separation from a self- propagating high-temperature synthesis (SHS) product. Materials Research Bulletin, 2007, pp.312-318.
DOI: 10.1016/j.materresbull.2006.05.032
Google Scholar
[10]
Ting an Zhang, et al. Kinetics of preparation of titanium boride by SHS. The Chinese Journal of Nonferrous Metals, 2001, pp.567-570.
Google Scholar