[1]
M. Katsuki and T. Hasegawa, The science and technology of combustion in highlypreheated air, 1998, pp.3135-3146.
Google Scholar
[2]
A. Cavaliere and M. de Joannon, Mild combustion, Progress in Energy and Combustion Science, vol. 30, pp.329-366, (2004).
DOI: 10.1016/j.pecs.2004.02.003
Google Scholar
[3]
J. A. Wunning and J. G. Wunning, Flameless oxidation to reduce thermal NO-formation, Progress in Energy and Combustion Science, vol. 23, pp.81-94, (1997).
DOI: 10.1016/s0360-1285(97)00006-3
Google Scholar
[4]
A. K. Gupta, S. Bolz and T. Hasegawa, Effect of air preheat temperature and oxygen concentration on flame structure and emission, Journal of Energy Resources Technology-Transactions of the Asme, vol. 121, pp.209-216, Sep (1999).
DOI: 10.1115/1.2795984
Google Scholar
[5]
B. Cain, Tom Robertson and John Newby, The Development and Application of Direct Fuel Injection Techniques for Emissions reduction in High Temperature Furnaces, (2000).
Google Scholar
[6]
I. Nakamachi, K. Yasuzawa and T. Nagata, Apparatus or method for carrying out combustion in a furnace, ed: Google Patents, (1990).
Google Scholar
[7]
A. Sobiesiak, Chiba; Kunio Yasuzawa, Kanagawa; Tadato Miyahara and Tkahiro Nagat, Performance Characteristics of the Novel Low-NO x CGRI Burner For Use with High Air Preheat, Combustion and flame, vol. 115, pp.93-125, (1998).
DOI: 10.1016/s0010-2180(97)00366-0
Google Scholar
[8]
D. Tabacco, C. Innarella; C. Bruno., Theoretical and numerical investigation on flameless combustion, Combustion Science and Technology, vol. 174, pp.1-35, (2002).
DOI: 10.1080/00102200208984086
Google Scholar
[9]
R. Boardman, C. N. Eatough, G. J. Germane and L. D. Smoot, Comparison of measurements and predictions of flame structure and thermal NOx, in a swirling, natural gas diffusion flame, Combustion Science and Technology, vol. 93, pp.193-210, (1993).
DOI: 10.1080/00102209308935289
Google Scholar
[10]
G. G. Szegö, Experimental and numerical investigation of a parallel jet MILD combustion burner system in a laboratory-scale furnace, (2010).
Google Scholar
[11]
J. M. Beer, Minimizing NOx emissions from stationary combustion; reaction engineering methodology, Chemical Engineering Science, vol. 49, pp.4067-4083, (1994).
DOI: 10.1016/s0009-2509(05)80006-5
Google Scholar
[12]
S. E. Hosseini, Mazlan A. Wahid, Abuelnuor, A.A. A, High temperature air combustion: Sustainable technology to low NOX formation, International Review of Mechanical Engineering, vol. Volume 6, pp.947-953, July 2012 (2012).
Google Scholar
[13]
H. S. A. Khalid M. Saqr, Mohsin M. Sies, Mazlan A. Wahid, Effect of free stream turbulence on NOx and soot formation in turbulent diffusion CH4-air flames, International Communications in Heat and Mass Transfer, vol. 37, pp.611-617, (2010).
DOI: 10.1016/j.icheatmasstransfer.2010.02.008
Google Scholar
[14]
K. M. Saqr, Hossam S. Aly , Mohsin M. Sies and Mazlan A. Wahid., Computational and experimental investigations of turbulent asymmetric vortex flames, International Communications in Heat and Mass Transfer, vol. 38, pp.353-362, (2011).
DOI: 10.1016/j.icheatmasstransfer.2010.12.001
Google Scholar
[15]
E. Khalil, Assessment of numerical computation of flow-properties in an axi-symmetric reversed flow furnace, Applied Mathematical Modelling, vol. 3, pp.25-31, (1979).
DOI: 10.1016/0307-904x(79)90064-7
Google Scholar
[16]
K. M. Saqr, Hossam S. Aly , Hassan I. Kassem, Mohsin M. Sies, Mazlan A. Wahid, Computations of shear driven vortex flow in a cylindrical cavity using a modified turbulence model, International Communications in Heat and Mass Transfer, vol. 37, pp.1072-1077, (2010).
DOI: 10.1016/j.icheatmasstransfer.2010.06.021
Google Scholar
[17]
K. M. Saqr, S. Aly, Hossam and Mazlan A. Wahid and M. Sies, Mohsin, Numerical simulation of confined vortex flow using a modified k- epsilon turbulence model, CFD Letters, vol. 1, pp.87-94, (2010).
Google Scholar
[18]
N. Schaffel-Mancini, Ecological Evaluation of the Pulverized Coal Combustion in HTAC Technology, Univ. Bbibliothek, (2009).
Google Scholar
[19]
P. J. Coelho and N. Peters, Numerical simulation of a mild combustion burner, Combustion and Flame, vol. 124, pp.503-518, Feb (2001).
DOI: 10.1016/s0010-2180(00)00206-6
Google Scholar
[20]
B. B. Dally, E. Riesmeier, and N. Peters , Effect of fuel mixture on moderate and intense low oxygen dilution combustion, Combustion and Flame, vol. 137, pp.418-431, Jun (2004).
DOI: 10.1016/j.combustflame.2004.02.011
Google Scholar
[21]
W. H. Yang and W. Blasiak, Numerical simulation of properties of a LPG flame with high-temperature air, International journal of thermal sciences, vol. 44, pp.973-985, Oct (2005).
DOI: 10.1016/j.ijthermalsci.2005.03.001
Google Scholar
[22]
W. H. Yang, Magnus M¨ortberg and Wlodzimierz Blmaasiak, Influences of flame configurations on flame properties and NO emissions in combustion with high-temperature air, Scandinavian Journal of Metallurgy, vol. 34, pp.7-15, Feb (2005).
DOI: 10.1111/j.1600-0692.2005.00710.x
Google Scholar
[23]
W. H. Yang and W. Blasiak, Flame entrainments induced by a turbulent reacting jet using high-temperature and oxygen-deficient oxidizers, Energy & Fuels, vol. 19, pp.1473-1483, Jul-Aug (2005).
DOI: 10.1021/ef049763o
Google Scholar
[24]
C. Galletti, Alessandro Parente, Leonardo Tognotti, Numerical and experimental investigation of a mild combustion burner, Combustion and Flame, vol. 151, pp.649-664, Dec (2007).
DOI: 10.1016/j.combustflame.2007.07.016
Google Scholar
[25]
A. Parente, C. Galletti, L. Tognotti, Effect of the combustion model and kinetic mechanism on the MILD combustion in an industrial burner fed with hydrogen enriched fuels, International Journal of Hydrogen Energy, vol. 33, pp.7553-7564, Dec (2008).
DOI: 10.1016/j.ijhydene.2008.09.058
Google Scholar
[26]
A. Khoshhal, Masoud Rahimi, and Ammar Abdulaziz Alsairafi., CFD study on influence of fuel temperature on NOx emission in a HiTAC furnace, International Communications in Heat and Mass Transfer, (2011).
DOI: 10.1016/j.icheatmasstransfer.2011.08.008
Google Scholar
[27]
M. Mancini, Roman Weber and Ugo Bollettini., Predicting NOx emissions of a burner operated in flameless oxidation mode, Proceedings of the combustion institute, vol. 29, pp.1155-1163, (2003).
DOI: 10.1016/s1540-7489(02)80146-8
Google Scholar
[28]
S. Orsino and R. Weber, Numerical simulation of combustion of natural gas with high- temperature air, Combustion Science and Technology, vol. 170, pp.1-34, (2001).
DOI: 10.1080/00102200108907848
Google Scholar
[29]
A. Khoshhal, Masoud Rahimi a and Ammar Abdulaziz Alsairafi., The CFD Modeling of NOx Emission, HITAC and Heat Transfer in an Industrial Boiler, Numerical Heat Transfer Part a-Applications, vol. 58, pp.295-312, (2010).
DOI: 10.1080/10407782.2010.505156
Google Scholar
[30]
H. Mohamed, Hmaeid Bentîcha and Sassi Mohamed., Numerical Modeling of the Effects of Fuel Dilution and Strain Rate on Reaction Zone Structure and NOX Formation in Flameless Combustion, Combustion Science and Technology, vol. 181, pp.1078-1091, (2009).
DOI: 10.1080/00102200903073909
Google Scholar
[31]
Abuelnuor, A.A.A., Mazlan A. Wahid, Aminuddin Saat, M .O. Abdalla, Seyed E. Hosseini, Pollutant reduction and energy saving in industrial sectors by applying high temperature air combustion method, 2012, International Journal on Heat and Mass Transfer – Theory andApplications, Vol 1, N. 1, February 2013, p.121.
Google Scholar
[32]
Kassem, H.I., Saqr, K.M., Mazlan A. Wahid, Implementation of the eddy dissipation model of turbulent non-premixed combustion in OpenFOAM. International Communications in Heat and Mass Transfer, 38 (2011) 363 – 367.
DOI: 10.1016/j.icheatmasstransfer.2010.12.012
Google Scholar