Review of Numerical Studies on NOx Emission in the Flameless Combustion

Article Preview

Abstract:

Today one source of pollution emission in the combustion of fossil fuels is the formation of nitrogen oxides. To solve this problem many technologies have been introduced such as flameless combustion. Flameless combustion is of a great interest since it simultaneously provides higher thermal efficiency together with controlling the pollutant emission such as NOX. In this technology, the preheat temperature of the combustion air must be higher than the auto-ignition temperature of the reactant mixture. In this study, papers showing the numerical studies on the flameless combustion to reduce NOX emission are presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

235-240

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Katsuki and T. Hasegawa, The science and technology of combustion in highlypreheated air, 1998, pp.3135-3146.

Google Scholar

[2] A. Cavaliere and M. de Joannon, Mild combustion, Progress in Energy and Combustion Science, vol. 30, pp.329-366, (2004).

DOI: 10.1016/j.pecs.2004.02.003

Google Scholar

[3] J. A. Wunning and J. G. Wunning, Flameless oxidation to reduce thermal NO-formation, Progress in Energy and Combustion Science, vol. 23, pp.81-94, (1997).

DOI: 10.1016/s0360-1285(97)00006-3

Google Scholar

[4] A. K. Gupta, S. Bolz and T. Hasegawa, Effect of air preheat temperature and oxygen concentration on flame structure and emission, Journal of Energy Resources Technology-Transactions of the Asme, vol. 121, pp.209-216, Sep (1999).

DOI: 10.1115/1.2795984

Google Scholar

[5] B. Cain, Tom Robertson and John Newby, The Development and Application of Direct Fuel Injection Techniques for Emissions reduction in High Temperature Furnaces, (2000).

Google Scholar

[6] I. Nakamachi, K. Yasuzawa and T. Nagata, Apparatus or method for carrying out combustion in a furnace, ed: Google Patents, (1990).

Google Scholar

[7] A. Sobiesiak, Chiba; Kunio Yasuzawa, Kanagawa; Tadato Miyahara and Tkahiro Nagat, Performance Characteristics of the Novel Low-NO x CGRI Burner For Use with High Air Preheat, Combustion and flame, vol. 115, pp.93-125, (1998).

DOI: 10.1016/s0010-2180(97)00366-0

Google Scholar

[8] D. Tabacco, C. Innarella; C. Bruno., Theoretical and numerical investigation on flameless combustion, Combustion Science and Technology, vol. 174, pp.1-35, (2002).

DOI: 10.1080/00102200208984086

Google Scholar

[9] R. Boardman, C. N. Eatough, G. J. Germane and L. D. Smoot, Comparison of measurements and predictions of flame structure and thermal NOx, in a swirling, natural gas diffusion flame, Combustion Science and Technology, vol. 93, pp.193-210, (1993).

DOI: 10.1080/00102209308935289

Google Scholar

[10] G. G. Szegö, Experimental and numerical investigation of a parallel jet MILD combustion burner system in a laboratory-scale furnace, (2010).

Google Scholar

[11] J. M. Beer, Minimizing NOx emissions from stationary combustion; reaction engineering methodology, Chemical Engineering Science, vol. 49, pp.4067-4083, (1994).

DOI: 10.1016/s0009-2509(05)80006-5

Google Scholar

[12] S. E. Hosseini, Mazlan A. Wahid, Abuelnuor, A.A. A, High temperature air combustion: Sustainable technology to low NOX formation, International Review of Mechanical Engineering, vol. Volume 6, pp.947-953, July 2012 (2012).

Google Scholar

[13] H. S. A. Khalid M. Saqr, Mohsin M. Sies, Mazlan A. Wahid, Effect of free stream turbulence on NOx and soot formation in turbulent diffusion CH4-air flames, International Communications in Heat and Mass Transfer, vol. 37, pp.611-617, (2010).

DOI: 10.1016/j.icheatmasstransfer.2010.02.008

Google Scholar

[14] K. M. Saqr, Hossam S. Aly , Mohsin M. Sies and Mazlan A. Wahid., Computational and experimental investigations of turbulent asymmetric vortex flames, International Communications in Heat and Mass Transfer, vol. 38, pp.353-362, (2011).

DOI: 10.1016/j.icheatmasstransfer.2010.12.001

Google Scholar

[15] E. Khalil, Assessment of numerical computation of flow-properties in an axi-symmetric reversed flow furnace, Applied Mathematical Modelling, vol. 3, pp.25-31, (1979).

DOI: 10.1016/0307-904x(79)90064-7

Google Scholar

[16] K. M. Saqr, Hossam S. Aly , Hassan I. Kassem, Mohsin M. Sies, Mazlan A. Wahid, Computations of shear driven vortex flow in a cylindrical cavity using a modified turbulence model, International Communications in Heat and Mass Transfer, vol. 37, pp.1072-1077, (2010).

DOI: 10.1016/j.icheatmasstransfer.2010.06.021

Google Scholar

[17] K. M. Saqr, S. Aly, Hossam and Mazlan A. Wahid and M. Sies, Mohsin, Numerical simulation of confined vortex flow using a modified k- epsilon turbulence model, CFD Letters, vol. 1, pp.87-94, (2010).

Google Scholar

[18] N. Schaffel-Mancini, Ecological Evaluation of the Pulverized Coal Combustion in HTAC Technology, Univ. Bbibliothek, (2009).

Google Scholar

[19] P. J. Coelho and N. Peters, Numerical simulation of a mild combustion burner, Combustion and Flame, vol. 124, pp.503-518, Feb (2001).

DOI: 10.1016/s0010-2180(00)00206-6

Google Scholar

[20] B. B. Dally, E. Riesmeier, and N. Peters , Effect of fuel mixture on moderate and intense low oxygen dilution combustion, Combustion and Flame, vol. 137, pp.418-431, Jun (2004).

DOI: 10.1016/j.combustflame.2004.02.011

Google Scholar

[21] W. H. Yang and W. Blasiak, Numerical simulation of properties of a LPG flame with high-temperature air, International journal of thermal sciences, vol. 44, pp.973-985, Oct (2005).

DOI: 10.1016/j.ijthermalsci.2005.03.001

Google Scholar

[22] W. H. Yang, Magnus M¨ortberg and Wlodzimierz Blmaasiak, Influences of flame configurations on flame properties and NO emissions in combustion with high-temperature air, Scandinavian Journal of Metallurgy, vol. 34, pp.7-15, Feb (2005).

DOI: 10.1111/j.1600-0692.2005.00710.x

Google Scholar

[23] W. H. Yang and W. Blasiak, Flame entrainments induced by a turbulent reacting jet using high-temperature and oxygen-deficient oxidizers, Energy & Fuels, vol. 19, pp.1473-1483, Jul-Aug (2005).

DOI: 10.1021/ef049763o

Google Scholar

[24] C. Galletti, Alessandro Parente, Leonardo Tognotti, Numerical and experimental investigation of a mild combustion burner, Combustion and Flame, vol. 151, pp.649-664, Dec (2007).

DOI: 10.1016/j.combustflame.2007.07.016

Google Scholar

[25] A. Parente, C. Galletti, L. Tognotti, Effect of the combustion model and kinetic mechanism on the MILD combustion in an industrial burner fed with hydrogen enriched fuels, International Journal of Hydrogen Energy, vol. 33, pp.7553-7564, Dec (2008).

DOI: 10.1016/j.ijhydene.2008.09.058

Google Scholar

[26] A. Khoshhal, Masoud Rahimi, and Ammar Abdulaziz Alsairafi., CFD study on influence of fuel temperature on NOx emission in a HiTAC furnace, International Communications in Heat and Mass Transfer, (2011).

DOI: 10.1016/j.icheatmasstransfer.2011.08.008

Google Scholar

[27] M. Mancini, Roman Weber and Ugo Bollettini., Predicting NOx emissions of a burner operated in flameless oxidation mode, Proceedings of the combustion institute, vol. 29, pp.1155-1163, (2003).

DOI: 10.1016/s1540-7489(02)80146-8

Google Scholar

[28] S. Orsino and R. Weber, Numerical simulation of combustion of natural gas with high- temperature air, Combustion Science and Technology, vol. 170, pp.1-34, (2001).

DOI: 10.1080/00102200108907848

Google Scholar

[29] A. Khoshhal, Masoud Rahimi a and Ammar Abdulaziz Alsairafi., The CFD Modeling of NOx Emission, HITAC and Heat Transfer in an Industrial Boiler, Numerical Heat Transfer Part a-Applications, vol. 58, pp.295-312, (2010).

DOI: 10.1080/10407782.2010.505156

Google Scholar

[30] H. Mohamed, Hmaeid Bentîcha and Sassi Mohamed., Numerical Modeling of the Effects of Fuel Dilution and Strain Rate on Reaction Zone Structure and NOX Formation in Flameless Combustion, Combustion Science and Technology, vol. 181, pp.1078-1091, (2009).

DOI: 10.1080/00102200903073909

Google Scholar

[31] Abuelnuor, A.A.A., Mazlan A. Wahid, Aminuddin Saat, M .O. Abdalla, Seyed E. Hosseini, Pollutant reduction and energy saving in industrial sectors by applying high temperature air combustion method, 2012, International Journal on Heat and Mass Transfer – Theory andApplications, Vol 1, N. 1, February 2013, p.121.

Google Scholar

[32] Kassem, H.I., Saqr, K.M., Mazlan A. Wahid, Implementation of the eddy dissipation model of turbulent non-premixed combustion in OpenFOAM. International Communications in Heat and Mass Transfer, 38 (2011) 363 – 367.

DOI: 10.1016/j.icheatmasstransfer.2010.12.012

Google Scholar