Investigation of Vortex Reacting Flows in Asymmetric Meso Scale Combustor

Article Preview

Abstract:

In the current study computational and experimental investigations of a turbulent asymmetric vortex flame is presented. The three dimensional flow fields have been described using a computational methodology that impalements the kε turbulence model. The computational model is validated for isothermal flow. Moreover, the visible flame structure was captured by direct photography at a wide range of equivalence ratios in order to emphasize the exceptional stability of such flame. The mechanism of flame stability and interaction with the forced vortex field is preliminarily discussed. Finally, the basic characteristics of the asymmetric vortex flames are concluded.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

246-250

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I.A. Waitz, G. Gauba, Y.S. Tzeng, J. Fluids Eng. 120 (1998) 109–117.

Google Scholar

[2] A.C. Fernandez-Pello, Proc. Combust. Inst. 29 (2002) 883–899.

Google Scholar

[3] A.H. Epstein, J. Eng. Gas Turb. Power 126 (2004) 205–226.

Google Scholar

[4] D. Dunn-Rankin, E.M. Leal, D.C. Walther, Prog. Energy Combust. Sci. 31 (2005) 422–465.

Google Scholar

[5] Y. Ju, K. Maruta. Progress in Energy and Combustion Science 37 (2011) 669e715.

Google Scholar

[6] T.T. Leach, C.P. Cadou, Proc. Combust. Inst. 30 (2005) 2437–2444.

Google Scholar

[7] Y. Ju, B. Xu, Proc. Combust. Inst. 30 (2005) 2445– 2453.

Google Scholar

[8] D.G. Norton, D.G. Vlachos, Proc. Combust. Inst. 30 (2005) 2473–2480.

Google Scholar

[9] G.A. Boyarko, C. -J. Sung, S.J. Schneider, Proc. Combust. Inst. 30 (2005) 2481–2488.

Google Scholar

[10] S. Karagiannidis, J. Mantzaras, G. Jackson, K. Boulouchos, Proc. Combust. Inst. 31 (2007) 3309– 3317.

Google Scholar

[11] F.J. Weinberg, D.M. Rowe, G. Min, P.D. Ronney, Proc. Combust. Inst. 29 (2002) 941–947.

Google Scholar

[12] M. -H. Wu, Y. Wang, V. Yang, R.A. Yetter, Proc. Combust. Inst. 31 (2007) 3235–3242.

Google Scholar

[13] K. M. Saqr, H. S. Aly , M. M. Sies and M. A. Wahid, Computational and experimental investigations of turbulent asymmetricvortex flames, International Communications in Heat and Mass Transfer 38 (2011) 353–362.

DOI: 10.1016/j.icheatmasstransfer.2010.12.001

Google Scholar

[14] K.M. Saqr, H.S. Aly, M.M. Sies, M.A. Wahid, Effect of Free Stream Turbulence on NOx and Soot Formation in Turbulent Diffusion CH4-Air Flames, International Communications on Heat and Mass Transfer 37 (6) (2010) 611–617.

DOI: 10.1016/j.icheatmasstransfer.2010.02.008

Google Scholar

[15] K.M. Saqr, M.M. Sies, M.A. Wahid, Numerical investigation of the turbulence combustion interaction in non-premixed CH4/Air Flames, International Journal of Applied Mathematics and Mechanics 5 (8) (2009) 69–79.

Google Scholar

[16] K.M. Saqr. Aerodynamics and Thermochemistry of Turbulent Confined Asymmetric Vortex Flames. Universiti Teknologi Malaysia , (2011).

Google Scholar

[17] Saqr, K.M., H.S. Aly, H.I. Kassem, M.M. Sies, and Mazlan A. Wahid, Computations of Shear Driven Vortex Flow in a Cylindrical Cavity Using a Modified k-e Turbulence Model. International Communications in Heat and Mass Transfer, 2010. 37(8): pp.1072-1077.

DOI: 10.1016/j.icheatmasstransfer.2010.06.021

Google Scholar

[19] Saqr, K.M., H.S. Aly, and Mazlan A. Wahid, and M. M. Sies, Numerical Simulation of Confined Vortex Flow Using a Modified k-epsilon Turbulence Model. CFD Letters, 2009. 1(2): pp.87-94.

Google Scholar

[20] Kassem, H.I., Saqr, K.M., Mazlan A. Wahid, Implementation of the eddy dissipation model of turbulent non-premixed combustion in OpenFOAM. International Communications in Heat and Mass Transfer, 38 (2011) 363 – 367.

DOI: 10.1016/j.icheatmasstransfer.2010.12.012

Google Scholar