Effects of CO2 Dilution on the Premixed Combustion of CH4 in Microcombustor

Article Preview

Abstract:

A numerical study on premixed combustion of CH4 + CO2 + Air in two dimensional is done. Parameters of inlet velocity and temperature of fuel and combustor geometry and size are considers the same but the CO2 dilution rate changes. Results of this simulation shows that while the CO2 dilution rate increases, flame temperature and velocity decrease. There is a limitation for increasing of CO2 in the mixture. If amount of CO2 in the mixture goes beyond the 47.7%, the fuel will lose its ability to be ignited and thus there will be no flame in the combustor. In addition, knowing the maximum temperature of flame may help to analyze the combustion process and choose suitable material in manufacturing the micro combustor.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

251-256

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Epstein and S. Senturia, Macro power from micro machinery, Science-New York Then Washington-, pp.1211-1211, (1997).

DOI: 10.1126/science.276.5316.1211

Google Scholar

[2] A. Mehra and I. Waitz, Development of a hydrogen combustor for a microfabricated gas turbine engine, in Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, (1998).

DOI: 10.31438/trf.hh1998.9

Google Scholar

[3] A. C. Fernandez-Pello, Micropower generation using combustion: issues and approaches, Proceedings of the Combustion Institute, vol. 29, pp.883-899, (2002).

DOI: 10.1016/s1540-7489(02)80113-4

Google Scholar

[4] J. Hua, M. Wu, and K. Kumar, Numerical simulation of the combustion of hydrogen–air mixture in micro-scaled chambers part II: CFD analysis for a micro-combustor, Chemical engineering science, vol. 60, pp.3507-3515, (2005).

DOI: 10.1016/j.ces.2005.01.042

Google Scholar

[5] J. Hua, M. Wu, and K. Kumar, Numerical simulation of the combustion of hydrogen–air mixture in micro-scaled chambers. Part I: Fundamental study, Chemical engineering science, vol. 60, pp.3497-3506, (2005).

DOI: 10.1016/j.ces.2005.01.041

Google Scholar

[6] J. Zarvandi, S. Tabejamaat, and M. Baigmohammadi, Numerical study of the effects of heat transfer methods on CH4/(CH4+ H2)-AIR pre-mixed flames in a micro-stepped tube, Energy, vol. 44, pp.396-409, (2012).

DOI: 10.1016/j.energy.2012.06.015

Google Scholar

[7] S. E. Hosseini and Mazlan A. Wahid, Feasibility study of biogas production and utilization as a source of renewable energy in Malaysia, Renewable and Sustainable Energy Reviews, vol. 19, pp.454-462, (2013).

DOI: 10.1016/j.rser.2012.11.008

Google Scholar

[8] J. Park, K. T. Kim, J. S. Park, J. S. Kim, S. Kim, and T. K. Kim, A study on H2-Air counterflow flames in highly preheated air diluted with CO2, Energy & fuels, vol. 19, pp.2254-2260, (2005).

DOI: 10.1021/ef050152l

Google Scholar

[9] C. Cohé, C. Chauveau, I. Gökalp, and D. F. Kurtuluş, CO2 addition and pressure effects on laminar and turbulent lean premixed CH4 air flames, Proceedings of the Combustion Institute, vol. 32, pp.1803-1810, (2009).

DOI: 10.1016/j.proci.2008.06.181

Google Scholar

[10] S. H. Kim and J. A. Edmonds, Potential for advanced carbon capture and sequestration technologies in a climate constrained world: Pacific Northwest National Laboratory, (2000).

DOI: 10.2172/968483

Google Scholar

[11] S. E. Hosseini and Mazlan A. Wahid, Necessity of biodiesel utilization as a source of renewable energy in Malaysia, Renewable and Sustainable Energy Reviews, vol. 16, pp.5732-5740, (2012).

DOI: 10.1016/j.rser.2012.05.025

Google Scholar

[12] D. G. Norton and D. G. Vlachos, A CFD study of propane/air microflame stability Combustion and Flame, vol. 138, pp.97-107, (2004).

DOI: 10.1016/j.combustflame.2004.04.004

Google Scholar

[13] D. G. Norton and D. G. Vlachos, Combustion characteristics and flame stability at the microscale: a CFD study of premixed methane/air mixtures, Chemical engineering science, vol. 58, pp.4871-4882, (2003).

DOI: 10.1016/j.ces.2002.12.005

Google Scholar

[14] J. Li, S. Chou, W. Yang, and Z. Li, A numerical study on premixed micro-combustion of CH4–air mixture: Effects of combustor size, geometry and boundary conditions on flame temperature, Chemical engineering journal, vol. 150, pp.213-222, (2009).

DOI: 10.1016/j.cej.2009.02.015

Google Scholar

[15] K. M. Saqr, H. S. Aly, M. M. Sies, and Mazlan A. Wahid, Effect of free stream turbulence on NOx and soot formation in turbulent diffusion CH4-air flames, International Communications in Heat and Mass Transfer, vol. 37, pp.611-617, (2010).

DOI: 10.1016/j.icheatmasstransfer.2010.02.008

Google Scholar

[16] B. Xu and Y. Ju, Concentration slip and its impact on heterogeneous combustion in a micro scale chemical reactor, Chemical engineering science, vol. 60, pp.3561-3572, (2005).

DOI: 10.1016/j.ces.2005.01.022

Google Scholar

[17] F. Williams, (1985) Combustion Theory, Benjamin/Cummings, Menlo Park, CA.

Google Scholar

[18] T. T. Leach and C. P. Cadou, The role of structural heat exchange and heat loss in the design of efficient silicon micro-combustors, Proceedings of the Combustion Institute, vol. 30, pp.2437-2444, (2005).

DOI: 10.1016/j.proci.2004.08.229

Google Scholar

[19] K. Maruta, T. Kataoka, N. I. Kim, S. Minaev, and R. Fursenko, Characteristics of combustion in a narrow channel with a temperature gradient, Proceedings of the Combustion Institute, vol. 30, pp.2429-2436, (2005).

DOI: 10.1016/j.proci.2004.08.245

Google Scholar