[1]
Wang Z., Zu X., and Fu Y.: Review on the temperature memory effect in shape memory alloys. International Journal of Smart and Nano Materials. 2(3): pp.101-119. (2011).
DOI: 10.1080/19475411.2011.592866
Google Scholar
[2]
Pellegrini N.: A thermo-dynamical constitutive model based on kinetic approach for shape memory materials. pp.42-48. (2013).
DOI: 10.4028/www.scientific.net/amr.651.42
Google Scholar
[3]
Ghosh P., Rao A., and Srinivasa A.R.: Multifunctional Smart Material System (MSMS) using Shape memory alloys and Shape Memory Polymers. (2012).
DOI: 10.1117/12.915750
Google Scholar
[4]
Zhu Y., Zhang Y., and Zhao D.: Micromechanical constitutive model for phase transformation of NiTi polycrystal SMA. Jinshu Xuebao/Acta Metallurgica Sinica. 49(1): pp.123-128. (2013).
DOI: 10.3724/sp.j.1037.2012.00319
Google Scholar
[5]
Zhou B. and Yoon S.H.: A macroscopic constitutive model of shape memory alloy considering cyclic effects. Science China: Physics, Mechanics and Astronomy: pp.1-10. (2013).
DOI: 10.1007/s11433-013-5046-0
Google Scholar
[6]
Song Z., Dai H.H., and Sun Q.P.: Propagation stresses in phase transitions of an SMA wire: New analytical formulas based on an internal-variable model. International Journal of Plasticity. 42: pp.101-119. (2013).
DOI: 10.1016/j.ijplas.2012.10.002
Google Scholar
[7]
Fonseca M.A., Abreu B., Gonçalves F.A.M.M., Ferreira A.G.M., Moreira R.A.S., and Oliveira M.S.A.: Shape memory polyurethanes reinforced with carbon nanotubes. Composite Structures. 99: pp.105-111. (2013).
DOI: 10.1016/j.compstruct.2012.11.029
Google Scholar
[8]
Revathi A., Rao S., Rao K.V., Singh M.M., Murugan M.S., Srihari S., and Dayananda G.N.: Effect of strain on the thermomechanical behavior of epoxy based shape memory polymers. Journal of Polymer Research. 20(5): pp.1-10. (2013).
DOI: 10.1007/s10965-013-0113-9
Google Scholar
[9]
Aggogeri F., Borboni A., Merlo A., and Pellegrini N.: Machine tools thermostabilization using passive control strategies. Advanced Materials Research. 590: pp.252-257. (2012) DOI: 10. 4028/www. scientific. net/AMR. 590. 252.
DOI: 10.4028/www.scientific.net/amr.590.252
Google Scholar
[10]
Wang H.L., Yao S.L., Ge G., and Xu J.: Stochastic bifurcation and first-passage failure of shape memory alloy beam subjected to stochastic excitation. Zhendong yu Chongji/Journal of Vibration and Shock. 31(9): pp.24-28. (2012).
Google Scholar
[11]
Borboni A., De Santis D., and Faglia R.: Stochastic analysis of free vibrations in piezoelectric bimorphs. Proceedings of 8th Biennial ASME Conference on Engineering Systems Design and Analysis. (2006).
DOI: 10.1115/esda2006-95117
Google Scholar
[12]
Borboni A. and Faglia R.: Stochastic Evaluation and Analysis of Free Vibrations in Simply Supported Piezoelectric Bimorphs. Journal of Applied Mechanics. 80(2): pp.021003-021003. (2013) DOI: 10. 1115/1. 4007721.
DOI: 10.1115/1.4007721
Google Scholar
[13]
Yaguchi H., Kamata K., and Sasaki K.: In-piping actuator capable of free movement in a thin complex pipe. (2012).
DOI: 10.1109/coase.2012.6386515
Google Scholar
[14]
Lobontiu N., Cullin M., Ali M., and Hoffman J.: Planar compliances of thin circular-axis notch flexure hinges with midpoint radial symmetry. Mechanics Based Design of Structures and Machines. 41(2): pp.202-221. (2013).
DOI: 10.1080/15397734.2012.722887
Google Scholar
[15]
Amici C., Borboni A., and Faglia R.: A compliant PKM mesomanipulator: Kinematic and dynamic analyses. Advances in Mechanical Engineering. 2010. (2010) DOI: 10. 1155/2010/706023.
DOI: 10.1155/2010/706023
Google Scholar
[16]
Degeratu S., Rotaru P., Rizescu S., and Bîzdoacǎ N.G.: Thermal study of a shape memory alloy (SMA) spring actuator designed to insure the motion of a barrier structure. Journal of Thermal Analysis and Calorimetry. 111(2): pp.1255-1262. (2013).
DOI: 10.1007/s10973-012-2369-4
Google Scholar
[17]
Borboni A., Aggogeri F., Pellegrini N., and Faglia R.: Innovative modular SMA actuator. Advanced Materials Research. 590: pp.405-410. (2012) DOI 10. 4028/www. scientific. net/AMR. 590. 405.
DOI: 10.4028/www.scientific.net/amr.590.405
Google Scholar
[18]
Clausi D., Gradin H., Braun S., Peirs J., Stemme G., Reynaerts D., and Van Der Wijngaart W.: Robust actuation of silicon MEMS using SMA wires integrated at wafer-level by nickel electroplating. Sensors and Actuators, A: Physical. 189: pp.108-116. (2013).
DOI: 10.1016/j.sna.2012.08.036
Google Scholar
[19]
Borboni A., Aggogeri, F.; Faglia, R.: Design and Analysis of a Fibre-Shaped Micro-Actuator for Robotic Gripping. International Journal of Advanced Robotic Systems. 10(149): pp.1-10. (2013) DOI: 10. 5772/55539.
DOI: 10.5772/55539
Google Scholar
[20]
Furst S.J., Bunget G., and Seelecke S.: Design and fabrication of a bat-inspired flapping-flight platform using shape memory alloy muscles and joints. Smart Materials and Structures. 22(1). (2013).
DOI: 10.1088/0964-1726/22/1/014011
Google Scholar
[21]
Amici C., Borboni A., Faglia R., Fausti D., and Magnani P.L.: A parallel compliant meso-manipulator for finger rehabilitation treatments: Kinematic and dynamic analysis. in IEEE/RSJ International Conference on Intelligent Robots and Systems. (2008).
DOI: 10.1109/iros.2008.4651029
Google Scholar
[22]
Kheirikhah M.M., Khodayari A., and Nikpey S.M.: Design and modeling of a new biomimetic earthworm robot for endoscopy actuated by SMA wires. (2012).
DOI: 10.1109/eit.2012.6220709
Google Scholar