Computational Investigation of Mechanical Behaviour of FSW Joints

Article Preview

Abstract:

Friction stir welding (FSW) is a rapidly emerging joining technology due to significant advancements in tooling and process development. Latest literature relating to finite element analysis (FEA) of mechanical behaviour of FSW joints is reviewed in this paper. The recent development in FEA of mechanical behaviour of FSW joints is described with particular reference to two major factors that influence the performance of FSW joints: static behaviour and fatigue behaviour. The main FE methods used in FSW performance are discussed and illustrated with brief case studies from the literature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

260-266

Citation:

Online since:

August 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. He: Mater Manuf Process, Vol. 27(12), (2012), p.1354.

Google Scholar

[2] X. He: Int J Adv Manuf Technol, Vol. 58, (2012), p.643.

Google Scholar

[3] X. He: Int J Adhe Adhe, Vol. 31, (2011), p.248.

Google Scholar

[4] X. He: Int J Adv Manuf Technol, Vol. 48, (2010), p.607.

Google Scholar

[5] R.S. Mishra, Z.Y. Ma: Mater Sci Eng R, Vol. 50(1-2), (2005), p.1.

Google Scholar

[6] R. Nandan, T. DebRoy, H.K.D.H. Bhadeshia: Progress Mater Sci, Vol. 53(6), (2008), p.980.

Google Scholar

[7] P.L. Threadgilll, A.J. Leonard, H.R. Shercliff, P.J. Withers: Int Mater Reviews, Vol. 54(2), (2009), p.49.

Google Scholar

[8] P.M.G.P. Moreira, T. Santos, S.M.O. Tavares, V. Richter-Trummer, P. Vilaça, P.M.S.T. de Castro: Mater Des, Vol. 30(1), (2009), p.180.

Google Scholar

[9] M. Grujicic, G. Arakere, C.F. Yen, B.A. Cheeseman: J Mater Engng Perform, Vol. 20(7), (2011), p.1097.

Google Scholar

[10] B.Y. Lin, P. Yuan, J.J. Liu: Adv Mater Res, Vols. 264-265, (2011), p.217.

Google Scholar

[11] W. Woo, H. Choo, P.J. Withers, Z. J Mater Sci, Vol. 44(23), (2009), p.6302.

Google Scholar

[12] A. Simar, K.L. Nielsen, B. De Meester, T. Pardoen, V. Tvergaard: Mater Sci Forum, Vols. 638-642, (2009), p.333.

DOI: 10.4028/www.scientific.net/msf.638-642.333

Google Scholar

[13] L. Fratini, G. Buffa, R. Shivpuri: Mater Sci Engng A, Vol. 459(1-2), (2007), p.209.

Google Scholar

[14] C. Gallais, A. Simar, D. Fabregue, A. Denquin, G. Lapasset, B. de Meester, Y. Brechet, T. Pardoen: Metall Mater Trans A: Physic Metall Mater Scie, Vol. 38(5), (2007), p.964.

DOI: 10.1007/s11661-007-9121-x

Google Scholar

[15] A.A. Zadpoor, J. Sinke, R. Benedictus: Metall Mater Trans A: Physic Metall Mater Scie, Vol. 41(13), (2010), p.3365.

Google Scholar

[16] A. Pirondi: Engng Fract Mech, Vol. 77(11), (2010), p (2091).

Google Scholar

[17] K.L. Nielsen, T. Pardoen, V. Tvergaard, B. De Meester, A. Simar: Int J Solid Struct, Vol. 47(18-19), (2010), p.2359.

Google Scholar

[18] A. Murphy, F. Lynch, M. Price, A. Gibson: Proc Inst Mech Eng Part G: J Aerospace Engng, Vol. 220(4), (2006), p.267.

Google Scholar

[19] B. Tweedy, S. Sellmeyer, A. Jahn, D. Burford: Struct Dyn Mater Conf 2006, Vol. 11, p.7959.

Google Scholar

[20] J.W. Yoon, G.H. Bray, R.A.F. Valente, T.E.R. Childs: Thin-Wall Struct, Vol. 47(12), (2009), p.1608.

Google Scholar

[21] D. Rao, K. Huber, J. Heerens, J.F. dos Santos, N. Huber: Mater Sci Engng A, Vol. 565, (2013), p.44.

Google Scholar

[22] A.F. Golestaneh, A. Ali: J Failure Analys Prevent, Vol. 9(2), (2009), p.147.

Google Scholar

[23] A.F. Golestaneh, A. Ali, S. Voon Wong, F. Mustapha, M. Zadeh: Simulat, Vol. 85(1), (2009), p.45.

Google Scholar

[24] P. Cavaliere, M. Cabibbo, F. Panella, A. Squillace: Mater Des, Vol. 30(9), (2009), p.3622.

Google Scholar

[25] Y.E. Ma, Z.Q. Zhao, B.Q. Liu, W.Y. Li: Mater Sci Engng A, Vol. 569, (2013), p.41.

Google Scholar

[26] Y.E. Ma, B.Q. Liu, Z.Q. Zhao: J Northwest Polytech Univ, Vol. 31(1), (in Chinese), (2013), p.98.

Google Scholar

[27] Z. Barsoum, M. Khurshid, I. Barsoum: Mater Des, Vol. 41, (2012), p.231.

Google Scholar

[28] P.M.G.P. Moreira, F.M.F. de Oliveira, P.M.S.T. de Castro: J Mater Process Tech, Vol. 207(1-3), (2008), p.283.

Google Scholar

[29] Y.E. Ma, P. Staron, T. Fischer, P.E. Irving: Int J Fatigue, Vol. 33(11), (2011), p.1426.

Google Scholar

[30] P. Cavaliere, A. De Santis, F. Panella, A. Squillace: Int J Fatigue, Vol. 31(2), (2009), p.385.

Google Scholar

[31] S.R. Ahmadi, S.P. Hassanifard, M.M. Pour: Acta Mech, Vol. 223(4), (2012), p.829.

Google Scholar

[32] M.M. Shahri, R. Sandström, W. Osikowicz: Int J Fatigue, Vol. 37, (2012), p.60.

Google Scholar

[33] M.M. Shahri, R. Sandström: Int J Fatigue, Vol. 32(2), (2010), p.302.

Google Scholar

[34] D. Fersini, A. Pirondi: Engng Fract Mech, Vol. 75(3-4), (2008), p.790.

Google Scholar

[35] H. Kang, K. Kari, A. Getti, A.K. Khosrovaneh, X. Su, L. Zhang, Y.L. Lee: Proc Mater Sci Tech Conf Exhibit, Vol. 2, (2012), p.1322.

Google Scholar

[36] S.M. Häusler, P. Horst: Key Engng Mater, Vols. 385-387, (2008), p.529.

Google Scholar

[37] V.X. Tran, J. Pan: Int J Fatigue, Vol. 32(7), (2010), p.1167.

Google Scholar

[38] V.X. Tran, J. Pan, T. Pan: Int J Fatigue, Vol. 32(7), (2010), p.1022.

Google Scholar

[39] M.A. Sutton, A.P. Reynolds, Y.Z. Ge, X. Deng: Fatigue Fract Engng Mater Struct, Vol. 29(7), (2006), p.537.

Google Scholar

[40] L. Fratini, G. Macaluso, S. Pasta: J Mater Process Tech, Vol. 209(15-16), (2009), p.5465.

Google Scholar

[41] Z. Zhang, H.W. Zhang: J Mech Strength, Vol. 28(6), (2006), (in Chinese), p.857.

Google Scholar