[1]
N. L. García, L. Famá, A. Dufresne, M. Aranguren, and S. Goyanes, A comparison between the physico-chemical properties of tuber and cereal starches, Food Research International. vol. 42 (2009), pp.976-982.
DOI: 10.1016/j.foodres.2009.05.004
Google Scholar
[2]
I. Roy and M. N. Gupta, Hydrolysis of starch by a mixture of glucoamylase and pullulanase entrapped individually in calcium alginate beads, Enzyme and Microbial Technology. vol. 34 (2004), pp.26-32.
DOI: 10.1016/j.enzmictec.2003.07.001
Google Scholar
[3]
M. J. E. C. van der Maarel, B. van der Veen, J. C. M. Uitdehaag, H. Leemhuis, and L. Dijkhuizen, Properties and applications of starch-converting enzymes of the α-amylase family, Journal of Biotechnology, vol. 94(2002), pp.137-155.
DOI: 10.1016/s0168-1656(01)00407-2
Google Scholar
[4]
R. K. Sukumaran, R. R. Singhania, and A. Pandey, Microbial cellulases - Production, applications and challenges, Journal of Scientific & Industrial Research. vol. 64(2005), pp.832-844.
Google Scholar
[5]
M. W. Kearsley and S. Z. Dziedzic, Starch Hydrolysis Products and Their Derivatives: Blackie Academic & Professional, (1995).
Google Scholar
[6]
K. Won, S. Kim, K. -J. Kim, H. W. Park, and S. -J. Moon, Optimization of lipase entrapment in Ca-alginate gel beads, Process Biochemistry, vol. 40(2005), pp.2149-2154.
DOI: 10.1016/j.procbio.2004.08.014
Google Scholar
[7]
S. Talekar and S. Chavare, Optimization of immobilization of α-amylase in alginate gel and its comparative biochemical studies with free α-amylase, Recent Research in Science and Technology. vol. 4(2012), pp.01-05.
Google Scholar
[8]
R. SchererI, J. V. OliveiraI, S. PergherII, and D. de Oliveira, Screening of supports for immobilization of commercial porcine pancreatic lipase, Materials Research. vol. 14(2011), pp.483-492.
DOI: 10.1590/s1516-14392011005000079
Google Scholar
[9]
L. Cao and R. D. Schmid, Carrier-bound Immobilized Enzymes: Principles, Application and Design: Wiley, (2006).
Google Scholar
[10]
Z. Konsoula and M. Liakopoulou-Kyriakides, Starch hydrolysis by the action of an entrapped in alginate capsules α-amylase from Bacillus subtilis, Process Biochemistry, vol. 41(2006), pp.343-349.
DOI: 10.1016/j.procbio.2005.01.028
Google Scholar
[11]
A. R. DeGroot and R. J. Neufeld, Encapsulation of urease in alginate beads and protection from α-chymotrypsin with chitosan membranes, Enzyme and Microbial Technology, vol. 29(2001), pp.321-327.
DOI: 10.1016/s0141-0229(01)00393-3
Google Scholar
[12]
F. Adzmi, S. Meon, M. H. Musa, and N. A. Yusuf, Preparation, characterisation and viability of encapsulated Trichoderma harzianum UPM40 in alginate-montmorillonite clay, Journal of Microencapsulation, vol. 29(2012), pp.205-210.
DOI: 10.3109/02652048.2012.659286
Google Scholar
[13]
N . A. Edama, A. Sulaiman, K. H. Ku Hamid, M. N. Muhd Rodhi, M. Musa, and S. N. Abd Rahim, Preparation and Characterization of Sg. Sayong Clay Material for Biocatalyst Immobilization, Materials Science Forum. vol. 737(2013), pp.145-152.
DOI: 10.4028/www.scientific.net/msf.737.145
Google Scholar
[14]
O. A. Ajayi, A. J. Nok, and S. S. Adefila, Immobilization of Cassava Linamarase on Kankara Kaolinite Clay, Journal of Natural Sciences Research, vol. 2(2012), pp.55-62.
Google Scholar
[15]
A. Anwar, S. Ali, U. Qader, A. Raiz, S. Iqbal, and A. Azhar, Calcium Alginate: A Support Material for Immobilization of Proteases from Newly Isolated Strain of Bacillus subtilis KIBGE-HAS, World Applied Sciences Journal, vol. 7(2009).
DOI: 10.1016/j.jbiotec.2010.09.369
Google Scholar
[16]
P. Bernfeld, Amylases alpha and beta, Methods in Enzymology, pp.149-158, (1955).
Google Scholar
[17]
P. M. Doran, Bioprocess Engineering Principles: Elsevier Science & Technology, (2012).
Google Scholar
[18]
M. K. Campbell and S. O. Farrell, Biochemistry, Seven ed. United State: Brooks/Cole, (2011).
Google Scholar
[19]
M. Rebroš, M. Rosenberg, Z. Mlichová, L. u. Krištofíková, and M. Paluch, A simple entrapment of glucoamylase into LentiKats® as an efficient catalyst for maltodextrin hydrolysis, Enzyme and Microbial Technology, vol. 39(2006), pp.800-804.
DOI: 10.1016/j.enzmictec.2006.01.001
Google Scholar
[20]
S. Gopinath and S. Sugunan, Enzymes immobilized on montmorillonite K 10: Effect of adsorption and grafting on the surface properties and the enzyme activity, Applied Clay Science, vol. 35(2007), pp.67-75.
DOI: 10.1016/j.clay.2006.04.007
Google Scholar
[21]
M. -Y. Chang and R. -S. Juang, Activities, stabilities, and reaction kinetics of three free and chitosan–clay composite immobilized enzymes, Enzyme and Microbial Technology, vol. 36(2005), pp.75-82.
DOI: 10.1016/j.enzmictec.2004.06.013
Google Scholar
[22]
A. Tanriseven, Y. B. Uludağ, and Ş. Doğan, A novel method for the immobilization of glucoamylase to produce glucose from maltodextrin, Enzyme and Microbial Technology, vol. 30(2002), pp.406-409.
DOI: 10.1016/s0141-0229(02)00004-2
Google Scholar
[23]
S. Wang, P. Su, F. Ding, and Y. Yang, Immobilization of cellulase on polyamidoamine dendrimer-grafted silica, Journal of Molecular Catalysis B: Enzymatic, vol. 89(2013), pp.35-40.
DOI: 10.1016/j.molcatb.2012.12.011
Google Scholar