Nanoclay Supporting Materials for Enzymes Immobilization: Kinetics Investigation of Free and Immobilized System

Article Preview

Abstract:

In this paper, the kinetic parameters of free and encapsulated enzymes in the calcium alginate-clay beads were determined using Lineweaver-Burk plot. The Michaelis constant, Km of free alpha-amylase, glucoamylase and cellulase were 2.0831, 1.8326 and 7.8592 mg/mL, respectively, whereas for the encapsulated system, the Km values were 3.1604, 2.1708 and 9.2791 mg/mL, respectively. The results showed encapsulation enzymes gave higher Km value than the free enzymes. Comparatively the encapsulated alpha-amylase was 1.5 times higher and the glucoamylase and cellulase were 1.18 times higher. This suggests that the affinity of encapsulated enzymes for substrate was lower which might be due to the diffusional limitation of the substrate and enzymes. Amongst the three in both systems, glucoamylase was determined to have highest affinity followed by alpha-amylase and cellulase enzymes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-120

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. L. García, L. Famá, A. Dufresne, M. Aranguren, and S. Goyanes, A comparison between the physico-chemical properties of tuber and cereal starches, Food Research International. vol. 42 (2009), pp.976-982.

DOI: 10.1016/j.foodres.2009.05.004

Google Scholar

[2] I. Roy and M. N. Gupta, Hydrolysis of starch by a mixture of glucoamylase and pullulanase entrapped individually in calcium alginate beads, Enzyme and Microbial Technology. vol. 34 (2004), pp.26-32.

DOI: 10.1016/j.enzmictec.2003.07.001

Google Scholar

[3] M. J. E. C. van der Maarel, B. van der Veen, J. C. M. Uitdehaag, H. Leemhuis, and L. Dijkhuizen, Properties and applications of starch-converting enzymes of the α-amylase family, Journal of Biotechnology, vol. 94(2002), pp.137-155.

DOI: 10.1016/s0168-1656(01)00407-2

Google Scholar

[4] R. K. Sukumaran, R. R. Singhania, and A. Pandey, Microbial cellulases - Production, applications and challenges, Journal of Scientific & Industrial Research. vol. 64(2005), pp.832-844.

Google Scholar

[5] M. W. Kearsley and S. Z. Dziedzic, Starch Hydrolysis Products and Their Derivatives: Blackie Academic & Professional, (1995).

Google Scholar

[6] K. Won, S. Kim, K. -J. Kim, H. W. Park, and S. -J. Moon, Optimization of lipase entrapment in Ca-alginate gel beads, Process Biochemistry, vol. 40(2005), pp.2149-2154.

DOI: 10.1016/j.procbio.2004.08.014

Google Scholar

[7] S. Talekar and S. Chavare, Optimization of immobilization of α-amylase in alginate gel and its comparative biochemical studies with free α-amylase, Recent Research in Science and Technology. vol. 4(2012), pp.01-05.

Google Scholar

[8] R. SchererI, J. V. OliveiraI, S. PergherII, and D. de Oliveira, Screening of supports for immobilization of commercial porcine pancreatic lipase, Materials Research. vol. 14(2011), pp.483-492.

DOI: 10.1590/s1516-14392011005000079

Google Scholar

[9] L. Cao and R. D. Schmid, Carrier-bound Immobilized Enzymes: Principles, Application and Design: Wiley, (2006).

Google Scholar

[10] Z. Konsoula and M. Liakopoulou-Kyriakides, Starch hydrolysis by the action of an entrapped in alginate capsules α-amylase from Bacillus subtilis, Process Biochemistry, vol. 41(2006), pp.343-349.

DOI: 10.1016/j.procbio.2005.01.028

Google Scholar

[11] A. R. DeGroot and R. J. Neufeld, Encapsulation of urease in alginate beads and protection from α-chymotrypsin with chitosan membranes, Enzyme and Microbial Technology, vol. 29(2001), pp.321-327.

DOI: 10.1016/s0141-0229(01)00393-3

Google Scholar

[12] F. Adzmi, S. Meon, M. H. Musa, and N. A. Yusuf, Preparation, characterisation and viability of encapsulated Trichoderma harzianum UPM40 in alginate-montmorillonite clay, Journal of Microencapsulation, vol. 29(2012), pp.205-210.

DOI: 10.3109/02652048.2012.659286

Google Scholar

[13] N . A. Edama, A. Sulaiman, K. H. Ku Hamid, M. N. Muhd Rodhi, M. Musa, and S. N. Abd Rahim, Preparation and Characterization of Sg. Sayong Clay Material for Biocatalyst Immobilization, Materials Science Forum. vol. 737(2013), pp.145-152.

DOI: 10.4028/www.scientific.net/msf.737.145

Google Scholar

[14] O. A. Ajayi, A. J. Nok, and S. S. Adefila, Immobilization of Cassava Linamarase on Kankara Kaolinite Clay, Journal of Natural Sciences Research, vol. 2(2012), pp.55-62.

Google Scholar

[15] A. Anwar, S. Ali, U. Qader, A. Raiz, S. Iqbal, and A. Azhar, Calcium Alginate: A Support Material for Immobilization of Proteases from Newly Isolated Strain of Bacillus subtilis KIBGE-HAS, World Applied Sciences Journal, vol. 7(2009).

DOI: 10.1016/j.jbiotec.2010.09.369

Google Scholar

[16] P. Bernfeld, Amylases alpha and beta, Methods in Enzymology, pp.149-158, (1955).

Google Scholar

[17] P. M. Doran, Bioprocess Engineering Principles: Elsevier Science & Technology, (2012).

Google Scholar

[18] M. K. Campbell and S. O. Farrell, Biochemistry, Seven ed. United State: Brooks/Cole, (2011).

Google Scholar

[19] M. Rebroš, M. Rosenberg, Z. Mlichová, L. u. Krištofíková, and M. Paluch, A simple entrapment of glucoamylase into LentiKats® as an efficient catalyst for maltodextrin hydrolysis, Enzyme and Microbial Technology, vol. 39(2006), pp.800-804.

DOI: 10.1016/j.enzmictec.2006.01.001

Google Scholar

[20] S. Gopinath and S. Sugunan, Enzymes immobilized on montmorillonite K 10: Effect of adsorption and grafting on the surface properties and the enzyme activity, Applied Clay Science, vol. 35(2007), pp.67-75.

DOI: 10.1016/j.clay.2006.04.007

Google Scholar

[21] M. -Y. Chang and R. -S. Juang, Activities, stabilities, and reaction kinetics of three free and chitosan–clay composite immobilized enzymes, Enzyme and Microbial Technology, vol. 36(2005), pp.75-82.

DOI: 10.1016/j.enzmictec.2004.06.013

Google Scholar

[22] A. Tanriseven, Y. B. Uludağ, and Ş. Doğan, A novel method for the immobilization of glucoamylase to produce glucose from maltodextrin, Enzyme and Microbial Technology, vol. 30(2002), pp.406-409.

DOI: 10.1016/s0141-0229(02)00004-2

Google Scholar

[23] S. Wang, P. Su, F. Ding, and Y. Yang, Immobilization of cellulase on polyamidoamine dendrimer-grafted silica, Journal of Molecular Catalysis B: Enzymatic, vol. 89(2013), pp.35-40.

DOI: 10.1016/j.molcatb.2012.12.011

Google Scholar