[1]
Chao Y.J., Luo P.F., An experimental study of the deformation fields around a propagating crack tip. Exp Mech 1998, 38: 79-85.
DOI: 10.1007/bf02321648
Google Scholar
[2]
Choi S., Shah S.P., Measurement of deformations on concrete subjected to compression using image correlation. Exp Mech 1997, 37: 307-313.
DOI: 10.1007/bf02317423
Google Scholar
[3]
Sutton M.A., Chae T.L., Development of a computer vision methodology for the analysis of surface deformations in magnified images; in George F. (ed): MicCon 90, Advances in Video Technology for Microstructural Control, ASTM STP 1094. Philadelphia, American Society for Testing and Materials, (1990).
DOI: 10.1520/stp17262s
Google Scholar
[4]
Cheng, T., Dai, C., Gan, R., Viscoelastic properties of human tympanic membrane. Annals of Biomedical Engineering, 2007, 35(2): 305-314.
DOI: 10.1007/s10439-006-9227-0
Google Scholar
[5]
Thompson, M.S., Schell, H., Lienau, J., Duda, G.N., Digital image correlation: a technique for determining local mechanical conditions within early bone callus. Medical Engineering and Physics, 2007, 29(7); 820-823.
DOI: 10.1016/j.medengphy.2006.08.012
Google Scholar
[6]
Mahmud J. The Development of a Novel Technique in Measuring Human Skin Deformation in vivo to Determine its Mechanical Properties,. 2009 PhD Thesis, Cardiff University, UK.
Google Scholar
[7]
Boyce, B.L., Grazier, J.M., Jones, R.E., Nguyen, T.D., Full-field deformation of bovine cornea under constrained inflation conditions. Biomaterials, 2008, 29(28): 3896-3904.
DOI: 10.1016/j.biomaterials.2008.06.011
Google Scholar
[8]
Sutton, M.A., Ke, X., Lessner, S.M., Goldbach, M., Yost, M., Zhao, F., Schreier, H.W., Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation. Journal of Biomedical Materials Research Part A, 2008, 84A(1): 178-190.
DOI: 10.1002/jbm.a.31268
Google Scholar
[9]
Hung P.C., Voloshin A.S., In-plane strain measurement by digital image correlation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2003, 25(3): 215-221.
DOI: 10.1590/s1678-58782003000300001
Google Scholar
[10]
Beynnon B.D., Amis A.A., In vitro testing protocols for the cruciate ligaments and ligament reconstructions. Knee Surg. Sports Traumatol Arthrosc. 1998, 6(1): S70-S76.
DOI: 10.1007/s001670050226
Google Scholar
[11]
Zantop T., Weimann A., Wolle K. et al, Initial and 6 weeks postoperative structural properties of soft tissue anterior cruciate ligament reconstructions with cross-pin or interference screw fixation: an in vivo study in sheep. Arthroscopy, 2007, 23(1): 14-20.
DOI: 10.1016/j.arthro.2006.10.007
Google Scholar
[12]
Kousa P., Järvinen T.L.N., Vihavainen M., et al, The fixation strength of six different hamstring graft fixation devices in anterior cruciate ligament reconstruction. Part I, Femoral site. Am. J. Sports Med, 2003, 31: 174-181.
DOI: 10.1177/03635465030310020401
Google Scholar
[13]
Snow M., Cheung W., Mahmud J., Evans S.L., Holt C.A., Wang B. and Chizari M. Mechanical assessment of two different methods of tripling hamstring tendons when using suspensory fixation. Knee Surgery, Sports Traumatology, Arthroscopy, 2012, 20(2): 262–267.
DOI: 10.1007/s00167-011-1619-5
Google Scholar
[14]
Moerman K.M., Holt C.A., Evans SL, Simms CK. Digital image correlation and finite element modelling as a method to determine mechanical properties of human soft tissue in vivo. Journal of Biomechanics, 2009, 42: 1150-1153.
DOI: 10.1016/j.jbiomech.2009.02.016
Google Scholar
[15]
Brown C.H. and Sklar J.H., Endoscopic anterior cruciate ligament reconstruction using doubled gracilis and semitendinosus tendons and endobutton femoral fixation. Arthroscopy: The Journal of Arthroscopic and Related Surgery, 1999, 7(4): 201-213.
DOI: 10.1016/s1060-1872(99)80027-6
Google Scholar