Identification of Parameter Matrices Using Residual Force Vector

Article Preview

Abstract:

The physical parameters obtained from modal tests do not satisfy the eigenvalue function due to modeling and measurement errors, and unexpected damage. The desired dynamic response can be obtained by identifying the most appropriate changes required to obtain the desired dynamic behaviour. The purpose of this study is to present the analytical equations on the updated stiffness and mass matrices in the satisfaction of eigenfunction including residual force vector term. Minimizing the cost functions of the difference between analytical and desired physical parameter matrices, the variations in parameter matrices are straightforwardly derived without using any multipliers. The validity of the proposed methods is evaluated in an application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-162

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.I. Friswell and J.E. Mottershead, in: Finite element model updating in structural dynamics, Kluwer Academic Publishers (1995).

Google Scholar

[2] M. Baruch, I.Y. Bar-Itzhack: AIAA J Vol. 16 (1978), p.346.

Google Scholar

[3] M. Baruch: AIAA J Vol. 20 (1982), p.1623.

Google Scholar

[4] A. Berman: AIAA J Vol. 17 (1979), p.1147.

Google Scholar

[5] A. Berman and E.J. Nagy: AIAA J Vol. 21 (1983), p.1168.

Google Scholar

[6] A.M. Kabe: AIAA J Vol. 23 (1985), p.1431.

Google Scholar

[7] B. Caeser and J. Pete: AIAA J Vol. 25 (1987), p.1494.

Google Scholar

[8] D.C. Zimmerman, M. Widengren: AIAA J Vol. 28 (1990), p.1670, Vol. 18 (1980), p.1274.

Google Scholar

[9] F.S. Wei: AIAA J Vol. 28 (1990), p.175.

Google Scholar

[10] I. Sheinman: Comput Struct Vol. 59(1) (1996), p.149.

Google Scholar

[11] Q. Huang, P. Gardoni, and S. Hurlebaus: Structures Congress 2009 (2009), p.1.

Google Scholar

[12] E.T. Lee and H.C. Eun: APPL MATH MODEL Vol. 33 (2009), p.2274.

Google Scholar

[13] E.T. Lee and H.C. Eun: APPL MATH MODEL Vol. 33 (2009), p.2723.

Google Scholar

[14] Q.W. Yang and J.K. Liu: J SOUND VIB Vol. 305 (2007), p.298.

Google Scholar