[1]
E. Dropkin, E. Somerscales, Heat transfer by natural convection in liquids confined by two parallel plates which are inclined at various angles with respect to the horizontal, J. Heat Transfer 87 (1965) 77-84.
DOI: 10.1115/1.3689057
Google Scholar
[2]
J. E. Hart, Stability of the flow in a differentially heated inclined box, J. Fluid Mech. 47 (1971) 547-576.
DOI: 10.1017/s002211207100123x
Google Scholar
[3]
T. E. Unny, Thermal instability in differentially heated inclined fluid layers, J. Appl. Mech. 39 (1972) 41-46.
DOI: 10.1115/1.3422665
Google Scholar
[4]
K. G. T. Hollands, L. Konicek, Experimental study of the stability of differentially heated inclined air layers, Int. J. Heat Mass Transfer 16 (1973) 1467-1476.
DOI: 10.1016/0017-9310(73)90153-1
Google Scholar
[5]
K. G. T. Hollands, T. E. Unny, G. D. Raithby, L. Konicek, Free convection heat transfer across inclined air layers, J. Heat Transfer 98 (1976) 189-193.
DOI: 10.1115/1.3450517
Google Scholar
[6]
S. M. Elshirbiny, G. D. Raithby, K. G. T. Hollands, Heat transfer by natural convection across vertical and inclined air layers, J. Heat Transfer 104 (1982) 96-102.
DOI: 10.1115/1.3245075
Google Scholar
[7]
S. M. Elshirbiny, K. G. T. Hollands, G. D. Raithby, Nusselt number distribution in vertical and inclined air layers, J. Heat Transfer 105 (1983) 406-408.
DOI: 10.1115/1.3245595
Google Scholar
[8]
H. Inaba, Experimental study of natural convection in an inclined air layer, Int. J. Heat Mass Transfer 27 (1984) 1127-1139.
DOI: 10.1016/0017-9310(84)90040-1
Google Scholar
[9]
T. G. Karayiannis, J. D. Tarasuk, Natural convection in an inclined rectangular cavity with different thermal boundary conditions at the top plate, J. Heat Transfer 110 (1988) 350-357.
DOI: 10.1115/1.3250491
Google Scholar
[10]
F. J. Hamady, J. R. Lloyd, H. Q. Yang, K. T. Yang, Study of local natural convection heat transfer in an inclined enclosure, Int. J. Heat Mass Transfer 32 (1989) 1697-1708.
DOI: 10.1016/0017-9310(89)90052-5
Google Scholar
[11]
R. A. Kuyper, T. H. H. Van der Meer, C. J. Hoogendoorn, R. A. W. M. Henkes, Numerical study of laminar and turbulent natural convection in an inclined square cavity, Int. J. Heat Mass Transfer 36 (1993) 2899-2911.
DOI: 10.1016/0017-9310(93)90109-j
Google Scholar
[12]
C. Y. Soong, P. Y. Tzeng, D. C. Chiang, T. S. Sheu, Numerical study of mode-transition of natural convection in differentially heated inclined enclosures, Int. J. Heat Mass Transfer 39 (1996) 2869-2882.
DOI: 10.1016/0017-9310(95)00378-9
Google Scholar
[13]
P. Y. Tzeng, C. Y. Soong, T. S. Sheu, Numerical investigation of transient flow-mode transition of laminar natural convection in an inclined enclosure, Num. Heat Transfer A 31 (1997) 193-206.
DOI: 10.1080/10407789708914032
Google Scholar
[14]
C. Cianfrini, M. Corcione, P. P. Dell'Omo, Natural convection in tilted square cavities with differentially heated opposite walls, Int. J. Thermal Sciences 44 (2005) 441-451.
DOI: 10.1016/j.ijthermalsci.2004.11.007
Google Scholar
[15]
A. Baïri, Nusselt-Rayleigh correlations for design of industrial elements: Experimental and numerical investigation of natural convection in tilted square air filled enclosures, Energy Conv. Manag. 49 (2008) 771-782.
DOI: 10.1016/j.enconman.2007.07.030
Google Scholar
[16]
C. S. Nor Azwadi, M. Y. Mohd Fairus, S. Syahrullail, Virtual study of natural convection heat transfer in an inclined square cavity, J. Applied Sciences 10 (2010) 331-336.
DOI: 10.3923/jas.2010.331.336
Google Scholar
[17]
F. A. Munir, N. A. C. Sidik, N. I. N. Ibrahim, Numerical simulation of natural convection in an inclined square cavity, J. Applied Sciences 11 (2011) 373-378.
DOI: 10.3923/jas.2011.373.378
Google Scholar
[18]
V. Vivek, A. K. Sharma, C. Balaji, Interaction effects between laminar natural convection and surface radiation in tilted square and shallow enclosures, Int. J. Thermal Sciences 60 (2012) 70-84.
DOI: 10.1016/j.ijthermalsci.2012.04.021
Google Scholar
[19]
I. Catton, P. S. Ayyaswamy, R. M. Clever, Natural convection flow in a finite rectangular slot arbitrarily oriented with respect to the gravity vector, Int. J. Heat Mass Transfer 17 (1974) 173-184.
DOI: 10.1016/0017-9310(74)90079-9
Google Scholar
[20]
H. Ozoe, H. Sayama, S. W. Churchill, Natural convection in an inclined square channel, Int. J. Heat Mass Transfer 17 (1974) 401-406.
DOI: 10.1016/0017-9310(74)90011-8
Google Scholar
[21]
H. Ozoe, K. Yamamoto, H. Sayama, S. W. Churchill, Natural circulation in an inclined rectangural channel heated on one side and cooled on the opposite side, Int. J. Heat Mass Transfer 17 (1974) 1209-1217.
DOI: 10.1016/0017-9310(74)90121-5
Google Scholar
[22]
H. Ozoe, H. Sayama, S. W. Churchill, Natural convection in an inclined rectangular channel at various aspect ratios and angles-Experimental measurement, Int. J. Heat Mass Transfer 18 (1975) 1425-1431.
DOI: 10.1016/0017-9310(75)90256-2
Google Scholar
[23]
J. N. Arnold, I. Catton, D. K. Edwards, Experimental investigation of natural convection in inclined rectangular regions of differing aspect ratios, J. Heat Transfer 98 (1976) 67-71.
DOI: 10.1115/1.3450472
Google Scholar
[24]
T. D. Upton, D. W. Watt, Experimental study of transient natural convection in an inclined rectangular enclosure, Int. J. Heat Mass Transfer 40 (1997) 2679-2690.
DOI: 10.1016/s0017-9310(96)00275-x
Google Scholar
[25]
L. Khezzar, D. Siginer, I. Vinogradov, Natural convection in inclined two dimensional rectangular cavities, Heat Mass Transfer 48 (2012) 227-239.
DOI: 10.1007/s00231-011-0876-7
Google Scholar
[26]
L. Khezzar, D. Siginer, I. Vinogradov, Natural convection of power law fluids in inclined cavities, Int. J. Thermal Sciences 53 (2012) 8-17.
DOI: 10.1016/j.ijthermalsci.2011.10.020
Google Scholar
[27]
J. P. Van Doormaal, G. D. Raithby, Enhancements of the simple method for predicting incompressible fluid flows, Num. Heat Transfer 11 (1984) 147-163.
DOI: 10.1080/10407798408546946
Google Scholar
[28]
S. V. Patankar, D. B. Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, Int. J. Heat Mass Transfer 15 (1972) 1787-1797.
DOI: 10.1016/0017-9310(72)90054-3
Google Scholar
[29]
S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publ. Co., Washington, DC, (1980).
Google Scholar
[30]
B. P. Leonard, A stable and accurate convective modelling procedure based on quadratic upstream interpolation, Comp. Meth. in Appl. Mech. Engng. 19 (1979) 59-78.
DOI: 10.1016/0045-7825(79)90034-3
Google Scholar
[31]
G. de Vahl Davis, Natural convection of air in a square cavity: a bench mark numerical solution, Int. J. Num. Meth. Fluids 3 (1983) 249-264.
DOI: 10.1002/fld.1650030305
Google Scholar
[32]
H. S. Mahdi, R. B. Kinney, Time-dependent natural convection in a square cavity: application of a new finite volume method, Int. J. Num. Meth. Fluids 11 (1990) 57-86.
DOI: 10.1002/fld.1650110105
Google Scholar
[33]
M. Hortmann, M. Peric, G. Scheuerer, Finite volume multigrid prediction of laminar natural convection: bench-mark solutions, Int. J. Num. Meth. Fluids 11 (1990) 189-207.
DOI: 10.1002/fld.1650110206
Google Scholar
[34]
D. C. Wan, B. S. V. Patnaik, G. W. Wei, A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution, Num. Heat Transfer 40 (2001) 199-228.
DOI: 10.1080/104077901752379620
Google Scholar
[35]
A. Bejan, Convection Heat Transfer, 3rd ed., John Wiley & Sons, Inc., Hoboken, New Jersey (2004).
Google Scholar
[36]
F. P. Incropera, D. P. Dewitt, T. L. Bergman, A. S. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed., John Wiley & Sons, Inc., Hoboken, New Jersey (2007).
Google Scholar