Dimensionless Correlating-Equations for Predicting the Optimal Tilting Angle of Water-Filled Square and Shallow Enclosures Differentially Heated at Sides

Article Preview

Abstract:

Laminar natural convection heat transfer inside water-filled, tilted square and shallow cavities heated at one side and cooled at the opposite side, is studied numerically. A computational code based on the SIMPLE-C algorithm is used to solve the system of the mass, momentum and energy transfer governing equations. Simulations are performed using the Rayleigh number based on the length of the heated and cooled sides, the height-to-width aspect ratio of the enclosure, and the positive tilting angle with respect to the gravity vector (which corresponds to configurations with the heated wall facing upwards), as independent variables. It is found that the heat transfer performance has a peak at an optimal tilting angle which increases as the Rayleigh number is decreased and the aspect ratio is increased. On the basis of the results obtained, a set of dimensionless correlations is developed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

163-172

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Dropkin, E. Somerscales, Heat transfer by natural convection in liquids confined by two parallel plates which are inclined at various angles with respect to the horizontal, J. Heat Transfer 87 (1965) 77-84.

DOI: 10.1115/1.3689057

Google Scholar

[2] J. E. Hart, Stability of the flow in a differentially heated inclined box, J. Fluid Mech. 47 (1971) 547-576.

DOI: 10.1017/s002211207100123x

Google Scholar

[3] T. E. Unny, Thermal instability in differentially heated inclined fluid layers, J. Appl. Mech. 39 (1972) 41-46.

DOI: 10.1115/1.3422665

Google Scholar

[4] K. G. T. Hollands, L. Konicek, Experimental study of the stability of differentially heated inclined air layers, Int. J. Heat Mass Transfer 16 (1973) 1467-1476.

DOI: 10.1016/0017-9310(73)90153-1

Google Scholar

[5] K. G. T. Hollands, T. E. Unny, G. D. Raithby, L. Konicek, Free convection heat transfer across inclined air layers, J. Heat Transfer 98 (1976) 189-193.

DOI: 10.1115/1.3450517

Google Scholar

[6] S. M. Elshirbiny, G. D. Raithby, K. G. T. Hollands, Heat transfer by natural convection across vertical and inclined air layers, J. Heat Transfer 104 (1982) 96-102.

DOI: 10.1115/1.3245075

Google Scholar

[7] S. M. Elshirbiny, K. G. T. Hollands, G. D. Raithby, Nusselt number distribution in vertical and inclined air layers, J. Heat Transfer 105 (1983) 406-408.

DOI: 10.1115/1.3245595

Google Scholar

[8] H. Inaba, Experimental study of natural convection in an inclined air layer, Int. J. Heat Mass Transfer 27 (1984) 1127-1139.

DOI: 10.1016/0017-9310(84)90040-1

Google Scholar

[9] T. G. Karayiannis, J. D. Tarasuk, Natural convection in an inclined rectangular cavity with different thermal boundary conditions at the top plate, J. Heat Transfer 110 (1988) 350-357.

DOI: 10.1115/1.3250491

Google Scholar

[10] F. J. Hamady, J. R. Lloyd, H. Q. Yang, K. T. Yang, Study of local natural convection heat transfer in an inclined enclosure, Int. J. Heat Mass Transfer 32 (1989) 1697-1708.

DOI: 10.1016/0017-9310(89)90052-5

Google Scholar

[11] R. A. Kuyper, T. H. H. Van der Meer, C. J. Hoogendoorn, R. A. W. M. Henkes, Numerical study of laminar and turbulent natural convection in an inclined square cavity, Int. J. Heat Mass Transfer 36 (1993) 2899-2911.

DOI: 10.1016/0017-9310(93)90109-j

Google Scholar

[12] C. Y. Soong, P. Y. Tzeng, D. C. Chiang, T. S. Sheu, Numerical study of mode-transition of natural convection in differentially heated inclined enclosures, Int. J. Heat Mass Transfer 39 (1996) 2869-2882.

DOI: 10.1016/0017-9310(95)00378-9

Google Scholar

[13] P. Y. Tzeng, C. Y. Soong, T. S. Sheu, Numerical investigation of transient flow-mode transition of laminar natural convection in an inclined enclosure, Num. Heat Transfer A 31 (1997) 193-206.

DOI: 10.1080/10407789708914032

Google Scholar

[14] C. Cianfrini, M. Corcione, P. P. Dell'Omo, Natural convection in tilted square cavities with differentially heated opposite walls, Int. J. Thermal Sciences 44 (2005) 441-451.

DOI: 10.1016/j.ijthermalsci.2004.11.007

Google Scholar

[15] A. Baïri, Nusselt-Rayleigh correlations for design of industrial elements: Experimental and numerical investigation of natural convection in tilted square air filled enclosures, Energy Conv. Manag. 49 (2008) 771-782.

DOI: 10.1016/j.enconman.2007.07.030

Google Scholar

[16] C. S. Nor Azwadi, M. Y. Mohd Fairus, S. Syahrullail, Virtual study of natural convection heat transfer in an inclined square cavity, J. Applied Sciences 10 (2010) 331-336.

DOI: 10.3923/jas.2010.331.336

Google Scholar

[17] F. A. Munir, N. A. C. Sidik, N. I. N. Ibrahim, Numerical simulation of natural convection in an inclined square cavity, J. Applied Sciences 11 (2011) 373-378.

DOI: 10.3923/jas.2011.373.378

Google Scholar

[18] V. Vivek, A. K. Sharma, C. Balaji, Interaction effects between laminar natural convection and surface radiation in tilted square and shallow enclosures, Int. J. Thermal Sciences 60 (2012) 70-84.

DOI: 10.1016/j.ijthermalsci.2012.04.021

Google Scholar

[19] I. Catton, P. S. Ayyaswamy, R. M. Clever, Natural convection flow in a finite rectangular slot arbitrarily oriented with respect to the gravity vector, Int. J. Heat Mass Transfer 17 (1974) 173-184.

DOI: 10.1016/0017-9310(74)90079-9

Google Scholar

[20] H. Ozoe, H. Sayama, S. W. Churchill, Natural convection in an inclined square channel, Int. J. Heat Mass Transfer 17 (1974) 401-406.

DOI: 10.1016/0017-9310(74)90011-8

Google Scholar

[21] H. Ozoe, K. Yamamoto, H. Sayama, S. W. Churchill, Natural circulation in an inclined rectangural channel heated on one side and cooled on the opposite side, Int. J. Heat Mass Transfer 17 (1974) 1209-1217.

DOI: 10.1016/0017-9310(74)90121-5

Google Scholar

[22] H. Ozoe, H. Sayama, S. W. Churchill, Natural convection in an inclined rectangular channel at various aspect ratios and angles-Experimental measurement, Int. J. Heat Mass Transfer 18 (1975) 1425-1431.

DOI: 10.1016/0017-9310(75)90256-2

Google Scholar

[23] J. N. Arnold, I. Catton, D. K. Edwards, Experimental investigation of natural convection in inclined rectangular regions of differing aspect ratios, J. Heat Transfer 98 (1976) 67-71.

DOI: 10.1115/1.3450472

Google Scholar

[24] T. D. Upton, D. W. Watt, Experimental study of transient natural convection in an inclined rectangular enclosure, Int. J. Heat Mass Transfer 40 (1997) 2679-2690.

DOI: 10.1016/s0017-9310(96)00275-x

Google Scholar

[25] L. Khezzar, D. Siginer, I. Vinogradov, Natural convection in inclined two dimensional rectangular cavities, Heat Mass Transfer 48 (2012) 227-239.

DOI: 10.1007/s00231-011-0876-7

Google Scholar

[26] L. Khezzar, D. Siginer, I. Vinogradov, Natural convection of power law fluids in inclined cavities, Int. J. Thermal Sciences 53 (2012) 8-17.

DOI: 10.1016/j.ijthermalsci.2011.10.020

Google Scholar

[27] J. P. Van Doormaal, G. D. Raithby, Enhancements of the simple method for predicting incompressible fluid flows, Num. Heat Transfer 11 (1984) 147-163.

DOI: 10.1080/10407798408546946

Google Scholar

[28] S. V. Patankar, D. B. Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, Int. J. Heat Mass Transfer 15 (1972) 1787-1797.

DOI: 10.1016/0017-9310(72)90054-3

Google Scholar

[29] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publ. Co., Washington, DC, (1980).

Google Scholar

[30] B. P. Leonard, A stable and accurate convective modelling procedure based on quadratic upstream interpolation, Comp. Meth. in Appl. Mech. Engng. 19 (1979) 59-78.

DOI: 10.1016/0045-7825(79)90034-3

Google Scholar

[31] G. de Vahl Davis, Natural convection of air in a square cavity: a bench mark numerical solution, Int. J. Num. Meth. Fluids 3 (1983) 249-264.

DOI: 10.1002/fld.1650030305

Google Scholar

[32] H. S. Mahdi, R. B. Kinney, Time-dependent natural convection in a square cavity: application of a new finite volume method, Int. J. Num. Meth. Fluids 11 (1990) 57-86.

DOI: 10.1002/fld.1650110105

Google Scholar

[33] M. Hortmann, M. Peric, G. Scheuerer, Finite volume multigrid prediction of laminar natural convection: bench-mark solutions, Int. J. Num. Meth. Fluids 11 (1990) 189-207.

DOI: 10.1002/fld.1650110206

Google Scholar

[34] D. C. Wan, B. S. V. Patnaik, G. W. Wei, A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution, Num. Heat Transfer 40 (2001) 199-228.

DOI: 10.1080/104077901752379620

Google Scholar

[35] A. Bejan, Convection Heat Transfer, 3rd ed., John Wiley & Sons, Inc., Hoboken, New Jersey (2004).

Google Scholar

[36] F. P. Incropera, D. P. Dewitt, T. L. Bergman, A. S. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed., John Wiley & Sons, Inc., Hoboken, New Jersey (2007).

Google Scholar