[1]
S. M. Joshi, A.G. Kelkar, J. T. Wen. Robust Attitude Stabilization of Spacecraft Using Nonlinear Quaternion Feedback. IEEE Transactions on Automatic Control. Vol. 40, (1995), pp.1800-1803.
DOI: 10.1109/9.467669
Google Scholar
[2]
P. Tsiotras. Further Passivity Results for the Attitude Control Problem. IEEE Transactions on Automatic Control. Vol. 43, (1998), pp.1597-1600.
DOI: 10.1109/9.728877
Google Scholar
[3]
T. A. Dwyer, R. H. Sira. Variable-Structure Control of Spacecraft Attitude Maneuvers. Journal of Guidance, Control and Dynamics. Vol. 11, (1988), pp.262-270.
DOI: 10.2514/3.20303
Google Scholar
[4]
F. Alonge, F. Dippolito, F. M. Raimondi. Globally Convergent Adaptive and Robust Control of Robotic Manipulators for Trajectory Tracking. Control Engineering Practice, Vol. 12, (2004), pp.1091-1100.
DOI: 10.1016/j.conengprac.2003.11.007
Google Scholar
[5]
S. H. Dong, S. H. Li. Stabilization of the Attitude of A Rigid Spacecraft with External Disturbances Using Finite-Time Control Techniques. Aerospace Science and Technology, Vol. 13, (2009), pp.256-265.
DOI: 10.1016/j.ast.2009.05.001
Google Scholar
[6]
Z. W. Sun, S. N. Wu, H. Li. Variable Structure Attitude Control of Staring Mode Spacecraft with Disturbance Observer. Journal of Harbin Institute of Technology. Vol. 42, (2010), pp.1374-1378.
Google Scholar
[7]
Y. Q. Xia, Zh. Zhu, M. Y. Fu, Sh. Wang. Attitude Tracking of Rigid Spacecraft with Bounded Disturbances. IEEE Transactions on Industrial Electronics, (2011), pp.647-659.
DOI: 10.1109/tie.2010.2046611
Google Scholar