Stability of an Underactuated Passive Biped Robot Using Partial Feedback Linearization Technique

Article Preview

Abstract:

This paper discusses the problem of achieving stable walking of a compass gait biped robot on a slope. A reference trajectory for stable walking is generated using Lagrangian dynamics of the biped robot. It is shown that an underactuated robot can follow the reference trajectory using a control law based on feedback linearization with respect to both hip and ankle joints. The results are compared in terms of Mean Square Error (MSE). The validity of the proposed controller is carried out using simulation studies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

456-462

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Vukobratović and Yu. Stepanenko, On the stability of anthropomorphic systems, Mathematical Biosciences, vol. 15, no. 1, pp.1-37, (1972).

DOI: 10.1016/0025-5564(72)90061-2

Google Scholar

[2] M. Vukobratović and B. Borovac, Zero Moment Point - Thirty Five Years of its Life, Int. l J. f Humanoid Robotics, vol. 1, no. 1, pp.157-173, (2004).

DOI: 10.1142/s0219843604000083

Google Scholar

[3] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, The 3D Linear Inverted Pendulum Mode: A Simple Modeling For A Biped Walking Pattern Generation, in Proc. IEEE Int. Conf. Intell. Robots Syst., 2001, pp.239-246.

DOI: 10.1109/iros.2001.973365

Google Scholar

[4] Pandu RangaVundavilli and Dilip Kumar Pratihar, Balanced Gait Generations of a Two-Legged Robot On Sloping Surface, Sadhana, vol. 36, part 4, p.525–550.

DOI: 10.1007/s12046-011-0031-7

Google Scholar

[5] N. T. Phuong, D. W. Kim, H. K. Kim and S. B. Kim, An Optimal Control Method for Biped Robot with Stable Walking Gait, in the Proc. of 8th IEEE - RAS Int. Conf. on Humanoid Robots, Daejeon, Korea, December 2003, pp.211-218.

DOI: 10.1109/ichr.2008.4755947

Google Scholar

[6] T. McGeer, Passive dynamic walking, Int. J. of Robotics, vol. 9, no. 2, pp.62-82, (1990).

Google Scholar

[7] Ambarish Goswami Bernard Espiau Ahmed Keramane, Limit cycles and their stability in a passive bipedal gait, in the Proc. of the 1996 IEEE Int. Conf. on Robotics and Automation, Minneapolis. Minnesota - April 1996, pp.246-251.

DOI: 10.1109/robot.1996.503785

Google Scholar

[8] A. Goswami, B. Espiau and A. Keramane, Limit cycles in a passive compass gait biped and passivity mimicking control laws, Autonomous Robots, vol. 4, no. 3, pp.273-286, (1997).

DOI: 10.1023/a:1008844026298

Google Scholar

[9] A. Goswami, B. Thuilot, and B. Espiau, A Study of the passive gait of a compass – like biped robot: Symmetry and chaos, Int. J. Robot. Res., vol. 17, no. 12, pp.1282-1301, (1998).

DOI: 10.1177/027836499801701202

Google Scholar

[10] A. Chemori, A. Loria, Walking control strategy for a planar under-actuated biped robot based on optimal reference trajectories and partial feedback linearization, in Proc. of 4th Int. Workshop on Robot Motion and Control, 2004, pp.61-66.

DOI: 10.1109/romoco.2004.240640

Google Scholar

[11] Y. Hu, G. Yan, and Z. Lin, Feedback control of planar biped robot with regulable step length and walking speed, IEEE Trans. on Robotics, vol. 27, no. 1, p.162 – 169, (2011).

DOI: 10.1109/tro.2010.2085471

Google Scholar

[12] M. W. Spong, J. Holm, and D. Lee, Passivity-based control of bipedal locomotion, IEEE Robot. Autom. Mag., vol. 14, no. 2, pp.30-40, (2007).

DOI: 10.1109/mra.2007.380638

Google Scholar

[13] Fumihiko Asano, Stability Analysis of Underactuated Bipedal Gait Using Linearized Model, in Proc. of 11th IEEE-RAS Int. Conf. on Humanoid Robots, 2011, p.282 – 287.

DOI: 10.1109/humanoids.2011.6100805

Google Scholar

[14] S. Kochuvila, Shikha. Tripathi and Sudarshan T S B, Control of a Compass Gait Biped Robot Based on Partial Feedback Linearization, Advances in Autonomous Robotics, Lecture Notes in Computer Science(LNCS), Springer Link, Volume 7429, pp.117-127, August, (2012).

DOI: 10.1007/978-3-642-32527-4_11

Google Scholar