Polymer Diaphragm Based Fiber Optic Fabry-Perot Acoustic Sensor

Article Preview

Abstract:

This paper presents a polymer diaphragm based Fabry-Perot (F-P) sensor system for aeroacoustic measurement in air. The diaphragm of a novel polymer material poly phthalazinone ether sulfone ketone (PPESK) is used as the sensing element. The effective dimension of the diaphragm is 1.0mm in diameter and 6μm in thickness. Thanks to the good mechanical feature of the material and the interferometric-intensity demodulation mechanism, the sensor diaphragm shift sensitivity of 0.72 nm/Pa, correspond to an acoustic pressure to voltage sensitivity of 5.56mV/Pa has been achieved. Experimental results showed that the characteristics of the sensor system is comparable with traditional electrical microphone in frequency range 100Hz to 1kHz and the sensor has the potential to be used as an optical microphone.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1087-1090

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Xingwei Wang, Juncheng Xu, Yizheng, Zhu, Kristie L. Cooper, and Anbo Wang, All-fused-sillica miniature optical fiber tip pressure sensor, Optics Letters, 13 2006 885-887.

DOI: 10.1364/ol.31.000885

Google Scholar

[2] D.C. Abeysinghe, S. Dasgupta, J.T. Boyd, H.E. Jackson, A novel MEMS pressure sensor fabricated on an optical fiber, IEEE Photonic Technol. Lett. 13 (2001) 993–995.

DOI: 10.1109/68.942671

Google Scholar

[3] K. Totsu, Y. Haga, M. Esashi, Ultra-miniature fiber-optic pressure sensor using white light interferometry, J. Micromech. Microeng. 15 (2005) 71–75.

DOI: 10.1088/0960-1317/15/1/011

Google Scholar

[4] X. Wang, B. Li, Z. Xiao, S. Lee, H. Roman, O. Russo, K. Kchin, K. Farmer, An ultra-sensitivity optical MEMS sensor for partial discharge detection, Journal of micromechanics and microengineering 15(2005) 521-527.

DOI: 10.1088/0960-1317/15/3/012

Google Scholar

[5] E. Cibula, D. Donlagic, C. Stropnik, Miniature Fiber Optic Pressure Sensor for Medical Applications, IEEE SENSORS, Orlando, FL, USA, 2002, p.711–714.

DOI: 10.1109/icsens.2002.1037190

Google Scholar

[6] E. Cibula, D. Donlagic, Miniature fiber-optic pressure sensor with a polymer diaphragm, Appl. Opt. 44 (2005) 2736–2744.

DOI: 10.1364/ao.44.002736

Google Scholar

[7] D. Donlagic, E. Cibula, All-fiber high-sensitivity pressure sensor with SiO2 diaphragm, Opt. Lett. 30 (2005) 2071–(2073).

DOI: 10.1364/ol.30.002071

Google Scholar

[8] Y.Z. Zhu, A.B. Wang, Miniature fiber-optic pressure sensor, IEEE Photonic Technol. Lett. 17 (2005) 447–449.

DOI: 10.1109/lpt.2004.839002

Google Scholar

[9] J. Xu, G. Pickrell, X. Wang, W. Peng, K. Cooper, and A. Wang A Novel Temperature-Insensitive Optical Fiber Pressure sensor for Harsh Environments, IEEE Photonics technology letters 17(2005)870-872.

DOI: 10.1109/lpt.2005.844013

Google Scholar

[10] Mario Di Giovanni, Flat and corrugated Diaphragm Design Handbook, New York, Marcel Dekker, (1982).

Google Scholar

[11] Jie Teng, Yuan Song, Xigao Jian, and Mingshan Zhao Optical properties of polymer poly (phthalazinone ether sulfone ketone) film waveguide, Chinese Optics Letters 6(1) (2008) 74-75.

DOI: 10.1016/j.polymer.2007.12.015

Google Scholar