[1]
Laird C. The influence of metallurgical structure on the mechanisms of fatigue crack propagation, ASTM STP, 415: 131(1967).
Google Scholar
[2]
Tomkins B., Biggs W.D., J Mater Sci, 4: 532-8(1969).
Google Scholar
[3]
Krasowsky A.J., Stepanenko V.A. A quantitative stereoscopic fractographic study of the mechanism of fatigue crack propagation in nickel, Int J Fract, 15: 203-15(1979).
DOI: 10.1007/bf00033220
Google Scholar
[4]
Wanhill R.J.H., Microstructural Influences on Fatigue and Fracture Resistance in High Strength Structural Materials, Engineering Fractrue Mechanics, Vol. 10: 337-357(1978).
DOI: 10.1016/0013-7944(78)90016-4
Google Scholar
[5]
Neumann P. New experiments concerning the slip processes at propagating fatigue cracks, Acta Metall, 22: 1155-65(1974).
DOI: 10.1016/0001-6160(74)90071-6
Google Scholar
[6]
Beden S. M., Abdullah S., Ariffin A. K. Review of fatigue crack propagation models for metallic components. European Journal of Scientific Research, 28(3): 364-397(2009).
Google Scholar
[7]
Singh K. D., Parry M. R., Sinclair I. Variable amplitude fatigue crack growth behavior - a short overview. Journal of Mechanical Science and Technology, 25(3): 663-673(2011).
DOI: 10.1007/s12206-011-0132-6
Google Scholar
[8]
Zhifang Liu, Zhonyong Xu, Lixiong Gu, A novel mechanics model for fatigue crack growth under constant amplitude loading, The 11th International Symposium on Structure Engineering, V1: 886-890 (2010).
Google Scholar
[9]
Lixiong Gu, Zhifang Liu, Zhongyong Xu. Threshold stress intensity factor () in inertial effect coefficient model. Advanced Materials Research, New and Advanced Materials, 197-198: 1452-1459(2011).
DOI: 10.4028/www.scientific.net/amr.197-198.1452
Google Scholar
[10]
Lixiong Gu, Zhifang Liu, Zhongyong Xu. A key parameter in a novel fatigue crack growth model. Advanced Materials Research, Advances in Structures, 163-167: 3186-3192(2011).
DOI: 10.4028/www.scientific.net/amr.163-167.3186
Google Scholar
[11]
Lixiong Gu, Zhifang Liu, Zhongyong Xu. Analysis of the parameter C in inertial effect coefficient model. Advanced Materials Research, Advances in Civil Engineering and Architecture, 243-249: 5458-5464(2011).
DOI: 10.4028/www.scientific.net/amr.243-249.5458
Google Scholar
[12]
J.B. Chang, J.H. Stolpestad. Improved Methods For Predicting Spectrum Loading Effects-Phase I Report, Volume II Test Data(1979).
Google Scholar
[13]
D.Q. Xu. Analysis and research of basic assumptions of new fatigue crack propagation model[D]. China, Guangzhou, South China University of Technology(2009).
Google Scholar
[14]
M. Shinozuka, R. Vaicaitis. Improved Methods For Predicting Spectrum Loading Effects-Phase I Report, Volume I-Results and Discussion(1979).
Google Scholar