A Study of the Nitrogen-Containing Heterocycles on Copolyimide Properties for Proton Exchange Membranes

Article Preview

Abstract:

Containing pyrimidine and pyridine monomers were incorporated respectively into the main chain of a sulfonated polyimide in order to investigate the effect of nitrogen-containing heterocycles on membrane properties such as water uptake and proton conductivity. With increasing content of the nitrogen-containing heterocycles, water uptake of membranes and dimensional changes remarkable decrease. The copolymer showed higher thermal stability (desulfonation temperature up to 330 °C) and reasonable good mechanical properties. These membranes also showed higher proton conductivity, which was comparable or even higher than Nafion 117.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

563-566

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. A. Hickner, H. Ghassemi, Y. S. Kim, J. E. McGrath, Chem. Rev. 104 (2004) 4587.

Google Scholar

[2] C. Genies, R. Mericer, B. Sillion, R. Petiaud, G. Gebel, M. Pineri, Polymer 42(2001) 5097.

DOI: 10.1016/s0032-3861(00)00645-5

Google Scholar

[3] K. Miyatake, Y. Chikashige, M. Watanabe, J. Am. Chem. Soc. 129 (2007) 3879.

Google Scholar

[4] D. S. Kim, K. H. Shin, H. B. Park, Y. S. Chung, S. Y. Nam, Y. M. Lee, J. Membr. Sci. 278 (2006) 428.

Google Scholar

[5] X. Guo, J. Fang, T. Watari, K. Tanaka, H. Kita, K. Okamoto, Macromolecules 35 (2002) 6707.

Google Scholar

[6] D. J. Liaw, K. L. Wang, F. C. Chang, Macromolecules 40 (2007) 3568.

Google Scholar

[7] M. Ghaemy, R. Alizadeh, Eur. Polym. J. 45 (2009) 1681.

Google Scholar

[8] V. N. Arteméva, V. V. Shamanin, V. P. Borovik, O. P. Shkurko, E. M. Nekrasova, G. V. Lyubimova, V. V. Kudryavtsev, Russ. J. Appl. Chem. 73 (2000) 131.

Google Scholar

[9] Y. N. Sazanov, V. N. Arteméva, G. M. Mikhailov, A. V. Gribanov, E. V. Beloborodova, M. F. Lebedeva, G. N. Fedorova, Russ. J. Appl. Chem. 72 (1999) 1022.

Google Scholar

[10] K. D. Kreuer, Solid State Ionics 94 (1997) 55.

Google Scholar

[11] K. D. Kreuer, A. Fuchs, M. Ise, M. Spaeth, J. Maier:Electrochim. Acta 43 (1998) 1281.

Google Scholar

[12] S. Granados, R. C. Woudenberg, O. Yavuzcetin, M. T. Tuominen, E. B. Coughlin, Macromolecules 40 (2007) 8708.

DOI: 10.1021/ma071715q

Google Scholar

[13] A. Xia, H. Guo, X. Qiu, M. Ding, L. Gao, J. Appl. Polm. Sci. 102 (2006) 1844.

Google Scholar

[14] B. Tamami, H. Yeganeh, Polymer 42 (2001) 415.

Google Scholar

[15] J. Fang, X. Guo, S. Harada, T. Watari, K. Tanaka, H. Kita, K. Okamoto, Macromolecules 35 (2002) 9022.

Google Scholar

[16] Y. Li, R. Jin, Z. Wang, Z. Cui, W. Xing, L. Gao, J. Polym. Sci . Part A Polym. Chem. 45 (2007) 222.

Google Scholar

[17] J. Kim, B. Kim, B. Jung, J. Membr. Sci. Vol. 207 (2002), p.129.

Google Scholar

[18] T. Watari, J. Fang, K. Tanaka, H. Kita, K. Okamoto, J. Membr. Sci. 230 (2004) 111.

Google Scholar

[19] X. Guo, J. Fang, T. Watari, K. Tanaka, K. Okamoto, Macromolecules 35 (2002) 6707.

Google Scholar

[20] J. Fang, X. Guo, S. Harada, T. Watari, K. Tanaka, H. Kita, K. Okamoto, Macromolecules 35 (2002) 9022.

Google Scholar