[1]
S. Da-gui, D. Jun, and L. Zuo-hua, Preparation and Characterization of N, S, F-Codoped Nanosize TiO2 with Ionic Liquid, Spectroscopy and Spectral Analysis, vol 31, pp.525-529, February (2011).
Google Scholar
[2]
Z. Yi, H. Jing, and Z. Li, Experimental Studies on Simultaneous Desulfurization and Denitrification of Flue Gas by Photocatalysis with TiO2, Chinese Journal of Power Engineering, vol 27, pp.411-414, October (2007).
Google Scholar
[3]
J. Hong Pan, X.S. Zhao, Wan In Lee, Block copolymer-templated synthesis of highly organized mesoporous TiO2-based films and their photoelectrochemical applications, Chemical Engineering Journal, vol 170, pp.363-380, June (2011).
DOI: 10.1016/j.cej.2010.11.040
Google Scholar
[4]
B. Gao, P. Seng Yap, T. Mariana Lim, et al, Adsorption-photocatalytic degradation of Acid Red 88 by supported TiO2: Effect of activated carbon support and aqueous anions, Chemical Engineering Journal, , vol 171, pp.1098-1107, July (2011).
DOI: 10.1016/j.cej.2011.05.006
Google Scholar
[5]
X.T. Shen, L.H. Zhu, G.X. Liu, et al, Enhanced photocatalytic degradation and selective removal of nitrophenols by using surface molecular imprinted titania, Environ. Sci. Technol. vol 42, pp.1687-1692, Feburary (2008).
DOI: 10.1021/es071788p
Google Scholar
[6]
H. Al-Ekabi, N. Serpone, Kinetics studies in heterogeneous photocatalysis. I. Photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over titania supported on a glass matrix, J. Phys. Chem. vol 92, pp.5726-5731, October (1988).
DOI: 10.1021/j100331a036
Google Scholar
[7]
J. Ananpattarachai, P. Kajitvichyanukul, S. Seraphin, Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants, J of Hazardous Materials, vol 168, pp.253-261, June (2009).
DOI: 10.1016/j.jhazmat.2009.02.036
Google Scholar
[8]
Rogers, R. K., Seddon, K. R., Ionic liquids: industrial applications to green chemistry;, Oxford University Press: Washington, DC, (2002).
Google Scholar
[9]
Holbrey, J. D., Reichert, W. M., Reddy, R. G., Rogers, R. D., Ionic liquids as green solvents: progress and prospects, Oxford University Press: Washington, DC, (2003).
Google Scholar
[10]
Bates E. D., Mayton, R. D., Ntai, I., et al, CO2 Capture by a Task-Specific Ionic Liquid, J. Am. Chem. Soc. vol 124, pp.926-927, January (2002).
DOI: 10.1021/ja017593d
Google Scholar
[11]
Zh. Ying, P. Peng, Effect of ionic liquid on the structural characteristic of TiO2,. Journal of Yunnan University. vol 31, pp.400-405, September (2009).
Google Scholar
[12]
I. Jitputti, T. Rattanavoravipa, S. Chuangchote, et al, Low temperature hydrothermal synthesis of monodispersed flower-like titanate nanosheets, [J]. Catalyst communication, vol 10, pp.378-382, Jnauary (2009).
DOI: 10.1016/j.catcom.2008.09.026
Google Scholar
[13]
Tian G, Fu Hong, Tian C H, et al., Synthesis and photocatalytic activity of stable nanocrystalline TiO2 with high crystallinity and large surface area, J of Hazardous Materials, vol 161, pp.1122-1130, Jnauary (2009).
DOI: 10.1016/j.jhazmat.2008.04.065
Google Scholar
[14]
Ohko Y, Fujishima A, Hashimoto K, Kinetic Analysis of the Photocatalytic Degradation of Gas-Phase 2-Propanol under Mass Transpor-Limited Conditions with a TiO2 Film Photocatalyst,J. Phys. Chem. B., vo1 2, p.1724~1729, Jnauary, (1998).
DOI: 10.1021/jp9727916
Google Scholar
[15]
Sauer M L, Ollis D F, Photocatalyzed Oxidation of Ethanol and Acetaldehyde in Humidified Air, J. Catal., vol 158, p.570~582, February (1996).
DOI: 10.1006/jcat.1996.0055
Google Scholar
[16]
Zh. Yi, Zh. Li, and H. Jing, Study on method and mechanism for simultaneous desulfurization and denitrification of flue gas based on the TiO2 photocatalysis, Science on China Series E: Technological Sciences, vol 51, pp.230-239, March (2008).
DOI: 10.1007/s11431-008-0021-0
Google Scholar
[17]
Zhou Y, Antonietti M, Synthesis of very small TiO2 nanocrystals in a room-temperature ionic liquid and their self-assembly toward mesoporous spherical aggregates, J. Am. Chem. Soc., vol 125, pp.14960-14961, November (2003).
DOI: 10.1021/ja0380998
Google Scholar
[18]
Yoo K, Choi H, Dionysiou D D, Ionic liquid assisted preparation of nanostructured TiO2 particles, Chem. Commun., vol 17, pp.2000-2001, July (2004).
DOI: 10.1039/b406040g
Google Scholar
[19]
Nakashima T, Kimizuka N, Interfacial Synthesis of Hollow TiO2 Microspheres in Ionic Liquids, J. Am. Chem. Soc., vol 125, p.6386–6387. May (2003).
DOI: 10.1021/ja034954b
Google Scholar
[20]
G. Bin, D. erhong, R. Ailing, et al, The solubility of SO2 in caprolactam tetrabutyl ammonium bromide ionic liquids, J. Chem. Eng. Data, vol 55, pp.1398-1401, October (2009).
DOI: 10.1021/je900565e
Google Scholar
[21]
M. Yunfei, Zh. Jinlong, T. Baozhu, et al, Synthesis and characterization of thermally stable Sm, N co-doped TiO2 with highly visible light activity, J of Hazardous Materials, vol 182, pp.386-393, October (2010).
DOI: 10.1016/j.jhazmat.2010.06.045
Google Scholar
[22]
W. Xiaojing, L. Yafei, and H. Zhonghua, Degradation of methyl orange by composite photocatalysts nano-TiO2 immobilized on activated carbons of different porosities, J of Hazardous Materials, vol 169, pp.1061-1067, September (2009).
DOI: 10.1016/j.jhazmat.2009.04.058
Google Scholar
[23]
Zh. Wenjun, L. Xiaodi, Y. Zhiying, et al, Ionic liquid-assisted synthesis of large-scale TiO2 nanoparticles with controllable phase by hydrolysis of TiCl4, ACS Nano., vol 3, pp.115-122, Jnauary (2009).
DOI: 10.1021/nn800713w
Google Scholar