Electrical Characteristics of Pt Schottky Contact to Semipolar (11-22) n-GaN Depending on Si Doping Concentration

Article Preview

Abstract:

Electrical characteristics of Pt Schottky contact formed on semipolar (11-22) n-type GaN planes with different Si doping concentration were investigated. Large Si doping to semipolar (11-22) n-GaN led to improved electrical and structural properties, e.g., the Hall mobility (μ) was increased by 35 % and the full width at half maximum (FWHM) of X-ray rocking curves with X-ray incident beam direction of [-1-12 was decreased by 34 %. Thermionic field emission (TFE) theory applied to the forward current-voltage (I-V) curves of fabricated Pt Schottky diodes yielded the Schottky barrier height (ΦB) of 1.64 and 1.84 eV, the tunneling parameter (E00) of 44 and 65 meV, and the ideality factor (n) of 1.83 and 2.57 for the lowly doped and highly doped samples, respectively, indicating that the Si doping affected the carrier transport properties substantially associated with the change of surface states density.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

146-151

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. M. Ng: Appl. Phys. Lett. Vol. 80 (2002), p.4369.

Google Scholar

[2] M. D. Craven, S. H. Lim, F. Wu, J. S. Speck, and S. P. DenBaars: Appl. Phys. Lett. Vol. 81 (2002), p.1201.

Google Scholar

[3] C. Chen, V. Adivarahan, J. Yang, M. Shatalov, E. Kuokstis, and M. Asif Khan: Jpn. J. Appl. Phys. Vol. 42 (2003), p. L1039.

DOI: 10.1143/jjap.42.l1039

Google Scholar

[4] J. -H. Ryou, P. D. Yoder, J. P. Liu, Z. Lochner, H. Kim, S. Choi, H. J. Kim, and R. D. Dupuis: IEEE J. Select. Topic. Quantum Electron. Vol. 15 (2009), p.1080.

DOI: 10.1109/jstqe.2009.2014170

Google Scholar

[5] M. Kuroda, T. Ueda, and T. Tanaka, IEEE Trans. Electron. Devices, Vol. 57 (2010), p.368.

Google Scholar

[6] Y. Kawakami, K. Nishizuka, D. Yamada, A. Kaneta, M. Funato, Y. Narukawa, and T. Mukai: Appl. Phys. Lett. Vol. 90 (2007), p.261912.

DOI: 10.1063/1.2748309

Google Scholar

[7] S. -N. Lee, J. Kim, and H. Kim: J. Ceram. Process Res. Vol. 13 (2012), p. s251.

Google Scholar

[8] S. -H. Han, K. -R. Song, J. -H. Lee, and S. -N. Lee: Curr. Appl. Phys. (on-line published; http: /dx. doi. org/10. 1016/j. cap. 2013. 01. 007).

Google Scholar

[9] B. P. Luther, S. E. Mohney, T. N. Jackson, M. Asif Khan, Q. Chen, and J. W. Yang: Appl. Phys. Lett. Vol. 70 (1997), p.57.

Google Scholar

[10] H. Kim, S. -N. Lee, Y. Park, J. S. Kwak, and T. -Y. Seong: Appl. Phys. Lett. Vol. 93 (2008), p.032105.

Google Scholar

[11] S. Jung, S. -N. Lee, K. -S. Ahn, and H. Kim: Jpn. J. Appl. Phys. Vol. 51 (2012), p.061001.

Google Scholar

[12] F. A. Padovani and R. Stratton: Solid-State Electron. Vol. 9 (1966), p.695.

Google Scholar

[13] E. H. Rhoderick: IEE Proc. Vol. 129 (1982), p.1.

Google Scholar

[14] L. S. Yu, Q. Z. Liu, Q. J. Xing, D. J. Qiao, S. S. Lau, and J. Redwing: J. Appl. Phys. Vol. 84 (1998), p. (2099).

Google Scholar

[15] A. E. Belyaev, N. S. Boltovets, V. N. Ivanov, V. P. Klad'ko, R. V. Konakova, Ya. Ya. Kudrik, A. V. Kuchuk, V. V. Milenin, Y. N. Sveshnikov, and V. N. Sheremet: Semiconductors Vol. 42 (2008), p.689.

DOI: 10.1134/s1063782608060092

Google Scholar

[16] S. M. Sze: Physics of Semiconductor Devices (Wiley, New York, 1981).

Google Scholar

[17] S. Jung, S. -N. Lee, and H. Kim, Appl. Phys. Lett. Vol. 102 (2013), p.151603.

Google Scholar