Nanofibers/PVA Blended Nano Fibre Matrix for Nervous Tissue Regeneration

Article Preview

Abstract:

Nanofibers produced by electrospinning represent a new class of promising scaffolds to support nerve regeneration. Here, we found that the blended solutions of chitosan (CS) with Poly (vinyl alcohol) (PVA) are appropriate for electrospinning when they form conductive, unstructured fluids displaying plasticity, rather than elasticity, in the bulk and at the interface. We then studied that utilize electrospun nanofibers to manipulate biological processes relevant to nervous tissue regeneration, including stem cell differentiation, guidance of neurite extension, and peripheral nerve injury treatments. The main objective of this article is to provide valuable methods for investigating the mechanisms of neurite growth on novel nanofibrous scaffolds and optimization of the nanofiber scaffolds and conduits for repairing peripheral nerve injuries.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-99

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Ashammakhi, A. Ndreu, L. Nikkola, I. Wimpenny, Y. Yang, Regenerative Med. 2008, 3, 547.

DOI: 10.2217/17460751.3.4.547

Google Scholar

[2] P. R. LeDuc, D. N. Robinson, Adv. Mater. 2007, 19, 3761.

Google Scholar

[3] R. G. Flemming, C. J. Murphy, G. A. Abrams, S. L. Goodman, P. F. Nealey, Biomaterials 1999, 20, 573.

Google Scholar

[4] S. Y. Chew, Y. Wen, Y. Dzenis, K. W. Leong, Curr. Pharm. Des. 2006, 12, 4751.

Google Scholar

[5] J. F. Mano, G. A. Silva, H. S. Azevedo, P. B. Malafaya, R. A. Sousa, S. S. Silva, L. F. Boesel, J. M. Oliveira, T. C. Santos, A. P. Marques, N. M. Neves, R. L. Reis, J. R. Soc. Interface 2007, 4, 999.

DOI: 10.1098/rsif.2007.0220

Google Scholar

[6] A. D. Augst, H. J. Kong, D. J. Mooney, Macromol. Biosci. 2006, 6, 623.

Google Scholar

[7] M. D. Krebs, E. Salter, E. Chen, K. A. Sutter, E. Alsberg, J. Biomed. Mater. Res. 2010, 92, 1131.

Google Scholar

[8] E. Alsberg, H. J. Kong, Y. Hirano, M. K. Smith, A. Albeiruti, D. J. Mooney, J. Dent. Res. 2003, 82, 903.

DOI: 10.1177/154405910308201111

Google Scholar

[9] E. Alsberg, K. W. Anderson, A. Albeiruti, J. A. Rowley, D. J. Mooney, Proc. Natl. Acad. Sci. USA 2002, 99, 12025.

DOI: 10.1073/pnas.192291499

Google Scholar

[10] K. H. Bouhadir, K. Y. Lee, E. Alsberg, K. L. Damm, K. W. Anderson, D. J. Mooney, Biotechnol. Prog. 2001, 17, 945.

DOI: 10.1021/bp010070p

Google Scholar

[11] T. Hashimoto, Y. Suzuki, M. Tanihara, Y. Kakimaru, K. Suzuki, Biomaterials 2004, 25, 1407.

Google Scholar

[12] W. R. Lee, J. H. Park, K. H. Kim, S. J. Kim, D. H. Park, M. H. Chae, S. H. Suh, S. W. Jeong, K. K. Park, Wound Repair Regen 2009, 17, 505.

Google Scholar

[13] P. Prang, R. Muller, A. Eljaouhari, K. Heckmann, W. Kunz, T. Weber, C. Faber, M. Vroemen, U. Bogdahn, N. Weidner, Biomaterials 2006, 27, 3560.

DOI: 10.1016/j.biomaterials.2006.01.053

Google Scholar

[14] A. Mosahebi, M. Simon, M. Wiberg, G. Terenghi, Tissue Eng. 2001, 7, 525.

Google Scholar