[1]
A. Guesmia: Existence globale et stabilization interne non lineaire d'un systeme de Petrovsky, Bell. Belg. Math. Soc., 5(1998), 583-594.
DOI: 10.36045/bbms/1103309996
Google Scholar
[2]
A. Guesmia: Energy decay for a damped nonlinear coupled system, J. Math. Anal. Appl., 239(1999), 38-48.
Google Scholar
[3]
M. Aassila and A. Guesmia: Energy decay for a damped nonlinear hyperbolic equation, Appl. Math. Lett., 12(1999), 49-52.
DOI: 10.1016/s0893-9659(98)00171-2
Google Scholar
[4]
V. Komornik: Exact Controllability and Stabilization, The Multiplier Method, Masson, Paris, (1994).
Google Scholar
[5]
S.A. Messaoudi: Global existence and nonexistence in a system of Petrovsky, J. Math. Anal. Appl., 265(2002), 296-308.
Google Scholar
[6]
K. Agre and M.A. Rammaha: Systems of nonlinear wave equations with damping and source terms, Differential and Integral Equations, 19(2006), 1235-1270.
DOI: 10.57262/die/1356050301
Google Scholar
[7]
M. Nakao: A difference inequality and its application to nonlinear evolution equations, J. Math. Soc. Janpan, 1978, 30: 747-762.
Google Scholar
[8]
G. Li, Y.N. Sun and W.J. Liu: Global existence, uniform decay and blow up for solutions of Petrovsky equations, Nonlinear Anal. TMA, (2011), 1523-1538.
DOI: 10.1016/j.na.2010.10.025
Google Scholar