Optimizing Discriminant Model for Improved Classification of Protein

Article Preview

Abstract:

Classifiers based on discriminant model achieved the highest accuracy compared to other protein classification methods in remote homology detection, but all of the classifiers were troubled by imbalance training in modeling. This paper presented a protein classification based on optimization of discriminant model to further improve the classifier performance by setting different penalty coefficients for the positive and negative samples to balance the training set weights. Comparative experiments show that the method based on optimized discriminant model obtained higher accuracy, and the method can improve the performance of all classifiers based on discriminant model by optimization of the parameters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3227-3231

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Chothia and A. M. Lesk: Embo. Vol. 10(1986), p.823.

Google Scholar

[2] S. B. Needleman and C. D. Wunsch: J. Mol. Biol. Vol. 48(1970), p.443.

Google Scholar

[3] T. Smith and M. Waterman: J. Mol. Biol. Vol. 147(1981), p.195.

Google Scholar

[4] W. R. Pearson: Methods in Enzymology Vol. 183(1990), p.63.

Google Scholar

[5] S. Altschul, W. Gish and W. Miller: J. Mol. Biol. Vol. 215(1990), p.403.

Google Scholar

[6] M. Gribskov, L. Thyr, and D. Eisenberg: Methods Enzymol Vol. 183(1990), p.146.

Google Scholar

[7] E. Birney: J. Res. Dev. Vol. 45(2001), p.449.

Google Scholar

[8] J. Park, K. Karplus and C. Barrett: J. Mol. Biol. Vol. 284(1998), p.1201.

Google Scholar

[9] S.F. Altschul, T.L. Madden and A.A. Schäffer: Nucleic Acids Res. Vol. 25(1997), p.3389.

Google Scholar

[10] Y. D. Cai, X. J. Liu, X. B. Xu, and K. C. Chou: J. Theoretical Bio. Vol. 221(2003), p.115.

Google Scholar

[11] L. Liao, W.S. Noble: J. Comp. Bio. Vol. 10(2004), p.857.

Google Scholar

[12] T. Jaakkola, M. Diekhans and D. Haussler: ISMB (1999), p.149.

Google Scholar

[13] C.S. Leslie, E. Eskin and A. Cohen: Bioinformatics Vol. 20(2004), p.467.

Google Scholar

[14] R. Kuang, E. Ie and K. Wang: J. Bioinformatics and Comp. Bio. Vol. 3(2005), p.527.

Google Scholar

[15] I. Melvin, J. Weston, C.S. Leslie and W.S. Noble: BMC Bioinformatics Vol. 9(2008), p.389.

Google Scholar

[16] D. Wang, J. Sun, F. Li: Natural Computation Vol. 2(2009), p.181.

Google Scholar

[17] T. Hamp, T. Goldberg, B. Rost: PLOS ONE Vol. 8(2013) , p.1371.

Google Scholar