An Automotive Airbag Detection Method Based on Image Processing

Article Preview

Abstract:

The development of the automobile industry led to the development of auto parts, and airbags are one of the most important safety components of cars. In this paper, to meet the shortfall of traditional way of using a dial indicator to detect airbags deficiencies, a new automotive airbag shape detection methods based on image processing technology is put forward. First, extract the airbags image edge information using the method of boundary tracking, then detect whether airbags are qualified according to the similarity of image invariant moment. Experiments confirmed this method can improve the range and accuracy of the airbag detection.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1350-1354

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ren Mingwu, Yang Jinyu, Sun Han. Tracing Boundary Contours in a Binary Image[J]. Image and Vision Computing, 2002, 20(2): 125-131.

DOI: 10.1016/s0262-8856(01)00091-9

Google Scholar

[2] Orlandot, Rui S. Image segmentation by histogram thresholding using fuzzy sets[J]. Transactions on Image Processing, IEEE, 2002, 11 ( 12 ): 1457-1465.

DOI: 10.1109/tip.2002.806231

Google Scholar

[3] Paragios N, Mellina-Gottardo O, Ramesh V. Gradient vector flow fast geometric active contours[J]. IEEE Transactions on Pattern Analysis and Machince Intelligence, 2004, 26(3): 402-407.

DOI: 10.1109/tpami.2004.1262337

Google Scholar

[4] Roh M C, Kin T Y, Park J, et al. Accurate object contour tracking based on boundary edge selection [J]. Pattern Recognition, 2007, 40 (3): 931-94.

DOI: 10.1016/j.patcog.2006.06.014

Google Scholar

[5] Erdem C E. Video object segmentation and tracking using region-based statistics[J]. Signal Processing: Image Communication, 2007, 22(10): 891-905.

DOI: 10.1016/j.image.2007.09.001

Google Scholar

[6] Gemignani V, Paterni M, Benassi A, et al. Real time contour tracking with a new edge detector[J]. Real-Time Imaging, 2004, 10(2): 103-116.

DOI: 10.1016/j.rti.2004.02.005

Google Scholar

[7] Shih M Y, Tseng D C. A wavelet-based multiresolution edge detection and tracking[J]. Image and Vision Computing, 2005, 23(4): 441-451.

DOI: 10.1016/j.imavis.2004.11.005

Google Scholar

[8] Deemter J H, Dubuf J M H. Simultaneous detection of lines and edges using compound Gabor filters [J]. International Journal of Pattern Recognition and Artificial Intelligence, 2000, 14(6): 757-777.

DOI: 10.1142/s0218001400000465

Google Scholar

[9] Wang Hongbo, Zhuang Zhihong, Zhang Qingtai. Infrared image segmentation algorithm in imaging guidance [J]. Infrared and Laser Engineering, 2003, 32(3): 234-238.

Google Scholar

[10] Kelvin. Designs and implementation of automated systems for pavement surface distress survey[J]. Journal of Infrastructure Systems, 2000(3): 24~32.

Google Scholar

[11] Zeng Xiang-jin, Huang Xin-han, Wang Min. Application of Invariant Moment's Improved Support Vector Machine to Micro-target Identification[J]. ROBOT, 2009, 31(2): 118-123.

Google Scholar

[12] Ansari M , Masmoudi L, Radouane L. A new region ma tching method for stereoscopic images [J]. Pattern Recognition Letters, 2000, 21(4):283~294.

DOI: 10.1016/s0167-8655(99)00158-0

Google Scholar