Research on Combinations of Primary and Secondary Pole Numbers for Linear Switched-Flux PM Machines with Odd Pole Number of Primary

Article Preview

Abstract:

Based on a simple analytical model, combinations of primary and secondary pole numbers for linear switched-flux permanent magnet (LSFPM) machines with odd pole number of primary are compared, with respect to back electromotive force (EMF) and electromagnetic thrust force. The winding configurations are also determined according to the coil-EMF vector diagram. Based on optimized LSFPM machines, some basic electromagnetic performances are compared in LSFPM machines with 9 primary poles. It is shown that the secondary pole number should be close to the primary pole number and the higher secondary poles can lead to a better performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

401-407

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. E. Rauch, and L. J. Johnson, Design principles of flux-switch alternators, AIEE Trans., vol. 74 III, pp.1261-1268, December (1955).

Google Scholar

[2] E. Hoang, A. H. Ben-Ahmed, and J. Lucidarme, Switching flux permanent magnet polyphased synchronous machines, Proc. of 7th Eur. Conf. on Power Electronics and Applications (EPE 97), Trondheim (Norway), vol. 3, Sep. 1997, p.903–908.

Google Scholar

[3] Z. Q. Zhu, Y. Pang, D. Howe, S. Iwasaki, R. Deodhar, and A. Pride, Analysis of electromagnetic performance of flux-switching permanent-magnet Machines by nonlinear adaptive lumped parameter magnetic circuit model, IEEE Trans. Magn., vol. 41, pp.4277-4287, November (2005).

DOI: 10.1109/tmag.2005.854441

Google Scholar

[4] C. Pollock, H. Pollock, R. Barron, J. R. Coles, D. Moule, A. Court, and R. Sutton, Flux-switching motors for automotive applications, IEEE Trans. Ind. Appl., vol. 42, pp.1177-1184, September/October (2006).

DOI: 10.1109/tia.2006.880842

Google Scholar

[5] Z. Q. Zhu, X. Chen, J. T. Chen, D. Howe, and J. S. Dai, Novel linear flux-switching permanent magnet machines, Proc. of Int. Conf. on Electrical Machines and Systems (ICEMS 2008), Wuhan (China), Oct. 2008, pp.2948-2953.

DOI: 10.1109/icems12746.2007.4412225

Google Scholar

[6] Jiabin Wang, Weiya Wang, K. Atallah, and D. Howe, Design considerations for tubular flux-switching permanent magnet machines, IEEE Trans. Magn., vol. 44, pp.4026-4032, November (2008).

DOI: 10.1109/tmag.2008.2002773

Google Scholar

[7] W. Min, J. T. Chen, Z. Q. Zhu, Y. Zhu, M. Zhang, and G. H. Duan, Optimization and comparison of novel e-core and c-core linear switched flux PM machines, IEEE Trans. Magn., vol. 47, pp.2134-2141, August (2011).

DOI: 10.1109/tmag.2011.2125977

Google Scholar

[8] W. Min, J. T. Chen, Z. Q. Zhu, Y. Zhu, and G. H. Duan, Optimization of linear flux switching permanent magnet motor, Proc. of IEEE Vehicle Power and Propulsion Conf. (VPPC 2010), Lille (France), Sep. 2010, pp.1-6.

DOI: 10.1109/vppc.2010.5729242

Google Scholar

[9] J. T. Chen, Z. Q. Zhu, A. S. Thomas, and D. Howe, Optimal combination of stator and rotor pole numbers in flux-switching PM brushless AC machines, Proc. of Int. Conf. on Electrical Machines and Systems (ICEMS 2008), Wuhan (China), Oct. 2008, pp.2905-2910.

DOI: 10.1109/icelmach.2008.4799940

Google Scholar

[10] J. T. Chen, and Z. Q. Zhu, Winding configurations and optimal stator and rotor pole combination of flux-switching PM brushless AC machines, IEEE Trans. Energy Convers., vol. 25, pp.293-302, June (2010).

DOI: 10.1109/tec.2009.2032633

Google Scholar