[1]
Yuwana M, Seborg D E. A new method for on-line controller tuning[J]. AIChE Journal 1982, 28(3): 434-440.
DOI: 10.1002/aic.690280311
Google Scholar
[2]
Taiwo O. Comparison of four methods of on-line identification and controller tuning[J]. Control Theory and Applications, IEE Proceedings D, 1993, 140(5): 323-327.
DOI: 10.1049/ip-d.1993.0043
Google Scholar
[3]
Jutan A, Rodriguez E S. Extension of a new method for on-line controller tuning[J]. The Canadian Journal of Chemical Engineering Can. J. Chem. Eng., 1984, 62(6): 802-807.
DOI: 10.1002/cjce.5450620610
Google Scholar
[4]
Rangaiah G P, Krishnaswamy P R. Estimating second-order dead time parameters from underdamped process transients[J]. Chemical Engineering Science, 1996, 51(7): 1149-1155.
DOI: 10.1016/s0009-2509(96)80013-3
Google Scholar
[5]
Suganda P, Krishnaswamy P R, Rangaiah G P. On-Line Process Identification from Closed-Loop Tests Under PI Control[J]. Chemical Engineering Research and Design Process Operations and Control, 1998, 76(4): 451-457.
DOI: 10.1205/026387698525063
Google Scholar
[6]
Wang Q, Zhang Y, Guo X. Robust closed-loop identification with application to auto-tuning[J]. Journal of Process Control, 2001, 11(5): 519-530.
DOI: 10.1016/s0959-1524(00)00030-5
Google Scholar
[7]
Wang L, Cluett W R. Building transfer function models from noisy step response data using the Laguerre network[J]. Chemical Engineering Science, 1995, 50(1): 149-161.
DOI: 10.1016/0009-2509(94)00214-c
Google Scholar
[8]
Mamat R, Fleming P J. Method for on-line identification of a first order plus dead-time process model[J]. Electronics Letters, 1995, 31(15): 1297-1298.
DOI: 10.1049/el:19950865
Google Scholar
[9]
Park H I, Sung S W, Lee I, et al. On-Line Process Identification Using the Laguerre Series for Automatic Tuning of the Proportional-Integral-Derivative Controller[J]. Industrial & Engineering Chemistry Research, 19972013, 36(1): 101-111.
DOI: 10.1021/ie960329m
Google Scholar
[10]
Silva R, Sbárbaro D, León De La Barra B A. Closed-Loop Process Identification under PI Control: A Time Domain Approach[J]. Industrial & Engineering Chemistry Research, 20062013, 45(13): 4671-4678.
DOI: 10.1021/ie051229w
Google Scholar
[11]
Hirama Y, Hamane H, Hiroki F. Closed loop modelling method for non-linear system using Laguerre polynomials: Control Automation and Systems (ICCAS), 2010 International Conference on, 2010[C].
DOI: 10.1109/iccas.2010.5670327
Google Scholar
[12]
Wang L, Cluett W R. Optimal choice of time-scaling factor for linear system approximations using Laguerre models[J]. Automatic Control, IEEE Transactions on, 1994, 39(7): 1463-1467.
DOI: 10.1109/9.299635
Google Scholar